BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 16421101)

  • 21. Cloning, expression, and characterization of a nitric oxide synthase protein from Deinococcus radiodurans.
    Adak S; Bilwes AM; Panda K; Hosfield D; Aulak KS; McDonald JF; Tainer JA; Getzoff ED; Crane BR; Stuehr DJ
    Proc Natl Acad Sci U S A; 2002 Jan; 99(1):107-12. PubMed ID: 11756668
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A conserved tryptophan in nitric oxide synthase regulates heme-dioxy reduction by tetrahydrobiopterin.
    Wang ZQ; Wei CC; Ghosh S; Meade AL; Hemann C; Hille R; Stuehr DJ
    Biochemistry; 2001 Oct; 40(43):12819-25. PubMed ID: 11669618
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mutational analysis of the tetrahydrobiopterin-binding site in inducible nitric-oxide synthase.
    Ghosh S; Wolan D; Adak S; Crane BR; Kwon NS; Tainer JA; Getzoff ED; Stuehr DJ
    J Biol Chem; 1999 Aug; 274(34):24100-12. PubMed ID: 10446182
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A tryptophan that modulates tetrahydrobiopterin-dependent electron transfer in nitric oxide synthase regulates enzyme catalysis by additional mechanisms.
    Wang ZQ; Wei CC; Santolini J; Panda K; Wang Q; Stuehr DJ
    Biochemistry; 2005 Mar; 44(12):4676-90. PubMed ID: 15779894
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Redox function of tetrahydrobiopterin and effect of L-arginine on oxygen binding in endothelial nitric oxide synthase.
    Berka V; Yeh HC; Gao D; Kiran F; Tsai AL
    Biochemistry; 2004 Oct; 43(41):13137-48. PubMed ID: 15476407
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure of tetrahydrobiopterin tunes its electron transfer to the heme-dioxy intermediate in nitric oxide synthase.
    Wei CC; Wang ZQ; Arvai AS; Hemann C; Hille R; Getzoff ED; Stuehr DJ
    Biochemistry; 2003 Feb; 42(7):1969-77. PubMed ID: 12590583
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nitric oxide-generated P420 nitric oxide synthase: characterization and roles for tetrahydrobiopterin and substrate in protecting against or reversing the P420 conversion.
    Huang L; Abu-Soud HM; Hille R; Stuehr DJ
    Biochemistry; 1999 Feb; 38(6):1912-20. PubMed ID: 10026272
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of the inducible nitric oxide synthase oxygenase domain identifies a 49 amino acid segment required for subunit dimerization and tetrahydrobiopterin interaction.
    Ghosh DK; Wu C; Pitters E; Moloney M; Werner ER; Mayer B; Stuehr DJ
    Biochemistry; 1997 Sep; 36(35):10609-19. PubMed ID: 9271491
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reactions catalyzed by tetrahydrobiopterin-free nitric oxide synthase.
    Rusche KM; Spiering MM; Marletta MA
    Biochemistry; 1998 Nov; 37(44):15503-12. PubMed ID: 9799513
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nitric oxide (NO) traffic in endothelial NO synthase. Evidence for a new NO binding site dependent on tetrahydrobiopterin?
    Slama-Schwok A; Négrerie M; Berka V; Lambry JC; Tsai AL; Vos MH; Martin JL
    J Biol Chem; 2002 Mar; 277(9):7581-6. PubMed ID: 11719512
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structures of tetrahydrobiopterin binding-site mutants of inducible nitric oxide synthase oxygenase dimer and implicated roles of Trp457.
    Aoyagi M; Arvai AS; Ghosh S; Stuehr DJ; Tainer JA; Getzoff ED
    Biochemistry; 2001 Oct; 40(43):12826-32. PubMed ID: 11669619
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetics of CO binding to the haem domain of murine inducible nitric oxide synthase: differential effects of haem domain ligands.
    Stevenson TH; Gutierrez AF; Alderton WK; Lian L; Scrutton NS
    Biochem J; 2001 Aug; 358(Pt 1):201-8. PubMed ID: 11485568
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aromatic residues and neighboring Arg414 in the (6R)-5,6,7, 8-tetrahydro-L-biopterin binding site of full-length neuronal nitric-oxide synthase are crucial in catalysis and heme reduction with NADPH.
    Sagami I; Sato Y; Daff S; Shimizu T
    J Biol Chem; 2000 Aug; 275(34):26150-7. PubMed ID: 10846172
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of the kinetics of CO binding to neuronal nitric oxide synthase by flash photolysis: dual effects of substrates, inhibitors, and tetrahydrobiopterin.
    Bengea S; Araki Y; Ito O; Igarashi J; Sagami I; Shimizu T
    J Inorg Biochem; 2004 Jul; 98(7):1210-6. PubMed ID: 15219987
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exploring the redox reactions between heme and tetrahydrobiopterin in the nitric oxide synthases.
    Stuehr DJ; Wei CC; Wang Z; Hille R
    Dalton Trans; 2005 Nov; (21):3427-35. PubMed ID: 16234921
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative computational analysis of active and inactive cofactors of nitric oxide synthase.
    Menyhárd DK
    J Phys Chem B; 2009 Mar; 113(10):3151-9. PubMed ID: 19708267
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Distinct dimer interaction and regulation in nitric-oxide synthase types I, II, and III.
    Panda K; Rosenfeld RJ; Ghosh S; Meade AL; Getzoff ED; Stuehr DJ
    J Biol Chem; 2002 Aug; 277(34):31020-30. PubMed ID: 12048205
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Arginine conversion to nitroxide by tetrahydrobiopterin-free neuronal nitric-oxide synthase. Implications for mechanism.
    Adak S; Wang Q; Stuehr DJ
    J Biol Chem; 2000 Oct; 275(43):33554-61. PubMed ID: 10945985
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Revisiting the Val/Ile Mutation in Mammalian and Bacterial Nitric Oxide Synthases: A Spectroscopic and Kinetic Study.
    Weisslocker-Schaetzel M; Lembrouk M; Santolini J; Dorlet P
    Biochemistry; 2017 Feb; 56(5):748-756. PubMed ID: 28074650
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A nitric oxide synthase-like protein from
    Picciano AL; Crane BR
    J Biol Chem; 2019 Jul; 294(27):10708-10719. PubMed ID: 31113865
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.