These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 1642156)

  • 1. Microbial degradation of biphenyl and its derivatives.
    Higson FK
    Adv Appl Microbiol; 1992; 37():135-64. PubMed ID: 1642156
    [No Abstract]   [Full Text] [Related]  

  • 2. Plasmid-mediated biodegradative fate of monohalogenated biphenyls in facultatively anaerobic sediments.
    Sayler GS; Kong HL; Shields MS
    Basic Life Sci; 1984; 28():117-35. PubMed ID: 6422923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradation and chemotaxis of polychlorinated biphenyls, biphenyls, and their metabolites by Rhodococcus spp.
    Wang H; Hu J; Xu K; Tang X; Xu X; Shen C
    Biodegradation; 2018 Feb; 29(1):1-10. PubMed ID: 29052043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic Processing of Biphenyl and Benzoate: Carbon Flow Through the Bacterial Community in Polychlorinated-Biphenyl-Contaminated Soil.
    Leewis MC; Uhlik O; Leigh MB
    Sci Rep; 2016 Feb; 6():22145. PubMed ID: 26915282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Occurrence of Tn4371-related mobile elements and sequences in (chloro)biphenyl-degrading bacteria.
    Springael D; Ryngaert A; Merlin C; Toussaint A; Mergeay M
    Appl Environ Microbiol; 2001 Jan; 67(1):42-50. PubMed ID: 11133426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The bphDEF meta-cleavage pathway genes involved in biphenyl/polychlorinated biphenyl degradation are located on a linear plasmid and separated from the initial bphACB genes in Rhodococcus sp. strain RHA1.
    Masai E; Sugiyama K; Iwashita N; Shimizu S; Hauschild JE; Hatta T; Kimbara K; Yano K; Fukuda M
    Gene; 1997 Mar; 187(1):141-9. PubMed ID: 9073078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradation of hazardous wastes.
    Aust SD; Bourquin A; Loper JC; Salanitro JP; Suk WA; Tiedje J
    Environ Health Perspect; 1994 Jan; 102 Suppl 1(Suppl 1):245-52. PubMed ID: 8187715
    [No Abstract]   [Full Text] [Related]  

  • 8. Anaerobic biodegradation of polychlorinated biphenyls by bacteria from Hudson River sediments.
    Chen M; Hong CS; Bush B; Rhee GY
    Ecotoxicol Environ Saf; 1988 Oct; 16(2):95-105. PubMed ID: 3148459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regional analysis of potential polychlorinated biphenyl degrading bacterial strains from China.
    Shuai J; Yu X; Zhang J; Xiong AS; Xiong F
    Braz J Microbiol; 2016; 47(3):536-41. PubMed ID: 27140507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Potential of viable but non-culturable bacteria in polychlorinated biphenyls degradation--a review].
    Su X; Ding L; Shen C
    Wei Sheng Wu Xue Bao; 2013 Sep; 53(9):908-14. PubMed ID: 24377242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential for biodegradation of polychlorinated biphenyls (PCBs) by Sinorhizobium meliloti.
    Tu C; Teng Y; Luo Y; Li X; Sun X; Li Z; Liu W; Christie P
    J Hazard Mater; 2011 Feb; 186(2-3):1438-44. PubMed ID: 21195547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of biphenyl and polychlorinated biphenyl-degrading bacteria and their degradation pathway.
    Chang YC; Takada K; Choi D; Toyama T; Sawada K; Kikuchi S
    Appl Biochem Biotechnol; 2013 May; 170(2):381-98. PubMed ID: 23529656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chlorinated biphenyl mineralization by individual populations and consortia of freshwater bacteria.
    Pettigrew CA; Breen A; Corcoran C; Sayler GS
    Appl Environ Microbiol; 1990 Jul; 56(7):2036-45. PubMed ID: 2117875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and characterization of a thermophilic Bacillus sp. JF8 capable of degrading polychlorinated biphenyls and naphthalene.
    Shimura M; Mukerjee-Dhar G; Kimbara K; Nagato H; Kiyohara H; Hatta T
    FEMS Microbiol Lett; 1999 Sep; 178(1):87-93. PubMed ID: 10483727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beta-cyclodextrin enhanced phytoremediation of aged PCBs-contaminated soil from e-waste recycling area.
    Chen Y; Tang X; Cheema SA; Liu W; Shen C
    J Environ Monit; 2010 Jul; 12(7):1482-9. PubMed ID: 20523947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural alteration of linear plasmids encoding the genes for polychlorinated biphenyl degradation in Rhodococcus strain RHA1.
    Fukuda M; Shimizu S; Okita N; Seto M; Masai E
    Antonie Van Leeuwenhoek; 1998; 74(1-3):169-73. PubMed ID: 10068798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The bioremediation of polychlorinated biphenyls (PCBs): problems and perspectives.
    Robinson GK; Lenn MJ
    Biotechnol Genet Eng Rev; 1994; 12():139-88. PubMed ID: 7727027
    [No Abstract]   [Full Text] [Related]  

  • 18. Biological approaches for polychlorinated biphenyl degradation.
    Unterman R; Bedard DL; Brennan MJ; Bopp LH; Mondello FJ; Brooks RE; Mobley DP; McDermott JB; Schwartz CC; Dietrich DK
    Basic Life Sci; 1988; 45():253-69. PubMed ID: 3140775
    [No Abstract]   [Full Text] [Related]  

  • 19. Adaptive responses and cellular behaviour of biphenyl-degrading bacteria toward polychlorinated biphenyls.
    Chávez FP; Gordillo F; Jerez CA
    Biotechnol Adv; 2006; 24(3):309-20. PubMed ID: 16413162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of physicochemical effects on the microbial degradation of chlorinated biphenyls.
    Havel J; Reineke W
    Appl Microbiol Biotechnol; 1995 Oct; 43(5):914-9. PubMed ID: 7576558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.