BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 16421718)

  • 1. Perspectives for synthesis and production of polyurethanes and related polymers by enzymes directed toward green and sustainable chemistry.
    Matsumura S; Soeda Y; Toshima K
    Appl Microbiol Biotechnol; 2006 Mar; 70(1):12-20. PubMed ID: 16421718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemoenzymatic synthesis and chemical recycling of sustainable polyurethanes.
    Yanagishita Y; Kato M; Toshima K; Matsumura S
    ChemSusChem; 2008; 1(1-2):133-42. PubMed ID: 18605676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and chemical recycling of novel poly(ester-urethane)s using an enzyme.
    Soeda Y; Toshima K; Matsumura S
    Macromol Biosci; 2005 Apr; 5(4):277-88. PubMed ID: 15818580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic synthesis and chemical recycling of poly(carbonate-urethane).
    Soeda Y; Toshima K; Matsumura S
    Macromol Biosci; 2004 Aug; 4(8):721-8. PubMed ID: 15468266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemoenzymatic synthesis and chemical recycling of poly(ester-urethane)s.
    Hayashi H; Yanagishita Y; Matsumura S
    Int J Mol Sci; 2011; 12(9):5490-507. PubMed ID: 22016604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipase-catalyzed transformation of poly(butylene adipate) and poly(butylene succinate) into repolymerizable cyclic oligomers.
    Okajima S; Kondo R; Toshima K; Matsumura S
    Biomacromolecules; 2003; 4(6):1514-9. PubMed ID: 14606875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly(carbonate urethane) and poly(ether urethane) biodegradation: in vivo studies.
    Christenson EM; Dadsetan M; Wiggins M; Anderson JM; Hiltner A
    J Biomed Mater Res A; 2004 Jun; 69(3):407-16. PubMed ID: 15127387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic degradation of poly(ether urethane) and poly(carbonate urethane) by cholesterol esterase.
    Christenson EM; Patel S; Anderson JM; Hiltner A
    Biomaterials; 2006 Jul; 27(21):3920-6. PubMed ID: 16600363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative mechanisms of poly(carbonate urethane) and poly(ether urethane) biodegradation: in vivo and in vitro correlations.
    Christenson EM; Anderson JM; Hiltner A
    J Biomed Mater Res A; 2004 Aug; 70(2):245-55. PubMed ID: 15227669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis, characterization and biocompatibility of biodegradable elastomeric poly(ether-ester urethane)s Based on Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and Poly(ethylene glycol) via melting polymerization.
    Li Z; Yang X; Wu L; Chen Z; Lin Y; Xu K; Chen GQ
    J Biomater Sci Polym Ed; 2009; 20(9):1179-202. PubMed ID: 19520007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Candida rugosa lipase-catalyzed polyurethane degradation in aqueous medium.
    Gautam R; Bassi AS; Yanful EK
    Biotechnol Lett; 2007 Jul; 29(7):1081-6. PubMed ID: 17450322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic transformation of bacterial polyhydroxyalkanoates into repolymerizable oligomers directed towards chemical recycling.
    Kaihara S; Osanai Y; Nishikawa K; Toshima K; Doi Y; Matsumura S
    Macromol Biosci; 2005 Jul; 5(7):644-52. PubMed ID: 15988790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transformation of biodegradable polyesters into cyclic oligomers under continuous flow using an enzyme-packed column.
    Osanai Y; Toshima K; Matsumura S
    Macromol Biosci; 2004 Oct; 4(10):936-42. PubMed ID: 15490437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antioxidant inhibition of poly(carbonate urethane) in vivo biodegradation.
    Christenson EM; Anderson JM; Hiltner A
    J Biomed Mater Res A; 2006 Mar; 76(3):480-90. PubMed ID: 16278858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and characterization of the novel transfection reagent poly(amino ester glycol urethane).
    Tseng SJ; Tang SC
    Biomacromolecules; 2007 Jan; 8(1):50-8. PubMed ID: 17206787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New insights into polyurethane biodegradation and realistic prospects for the development of a sustainable waste recycling process.
    Cregut M; Bedas M; Durand MJ; Thouand G
    Biotechnol Adv; 2013 Dec; 31(8):1634-47. PubMed ID: 23978675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of soft-segment chemistry on polyurethane biostability during in vitro fatigue loading.
    Wiggins MJ; MacEwan M; Anderson JM; Hiltner A
    J Biomed Mater Res A; 2004 Mar; 68(4):668-83. PubMed ID: 14986322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced biocompatibility in biostable poly(carbonate)urethane.
    Hsu SH; Kao YC; Lin ZC
    Macromol Biosci; 2004 Apr; 4(4):464-70. PubMed ID: 15468239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrolytic degradation behavior of biodegradable polyetheresteramide-based polyurethane copolymers.
    Liu C; Gu Y; Qian Z; Fan L; Li J; Chao G; Tu M; Jia W
    J Biomed Mater Res A; 2005 Nov; 75(2):465-71. PubMed ID: 16094664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the biodegradability of polyurethane and its derivatives by using lipase-displaying arming yeast.
    Shibasaki S; Kawabata A; Tanino T; Kondo A; Ueda M; Tanaka M
    Biocontrol Sci; 2009 Dec; 14(4):171-5. PubMed ID: 20055222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.