BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 16422119)

  • 1. [Environmental stimuli-sensitive biodegradable drug delivery systems].
    Zhang J; Chu L; Wang H; Ju X; Chen W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Dec; 22(6):1275-8. PubMed ID: 16422119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Progress in the study of pH and temperature sensitive biodegradable block copolymers].
    Hao TN; Qiao MX; Li Z; Chen DW
    Yao Xue Xue Bao; 2008 Feb; 43(2):123-7. PubMed ID: 18507336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradable polymers for ocular drug delivery.
    Kimura H; Ogura Y
    Ophthalmologica; 2001; 215(3):143-55. PubMed ID: 11340382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leakage-free DOX/PEGylated chitosan micelles fabricated via facile one-step assembly for tumor intracellular pH-triggered release.
    Zhao X; Yao Y; Tian K; Zhou T; Jia X; Li J; Liu P
    Eur J Pharm Biopharm; 2016 Nov; 108():91-99. PubMed ID: 27594211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Applications of chitosan and its derivatives in pharmaceutical industry of Chinese medicine].
    Wang LH; Wu GL; Cheng YY
    Zhongguo Zhong Yao Za Zhi; 2004 Apr; 29(4):289-92. PubMed ID: 15706858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N-Boc-histidine-capped PLGA-PEG-PLGA as a smart polymer for drug delivery sensitive to tumor extracellular pH.
    Chang G; Li C; Lu W; Ding J
    Macromol Biosci; 2010 Oct; 10(10):1248-56. PubMed ID: 20593367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermosensitive and biodegradable polymeric micelles with transient stability.
    Soga O; van Nostrum CF; Hennink WE
    J Control Release; 2005 Jan; 101(1-3):383-5. PubMed ID: 15822229
    [No Abstract]   [Full Text] [Related]  

  • 8. Development of surface modified biodegradable polymeric nanoparticles to deliver GSE24.2 peptide to cells: a promising approach for the treatment of defective telomerase disorders.
    Egusquiaguirre SP; Manguán-García C; Pintado-Berninches L; Iarriccio L; Carbajo D; Albericio F; Royo M; Pedraz JL; Hernández RM; Perona R; Igartua M
    Eur J Pharm Biopharm; 2015 Apr; 91():91-102. PubMed ID: 25660910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of doxycycline-eluting delivery systems based on SynBiosys biodegradable multi-block copolymers.
    Gillissen M; Steendam R; van der Laan A; Tijsma E
    J Control Release; 2006 Nov; 116(2):e90-2. PubMed ID: 17718990
    [No Abstract]   [Full Text] [Related]  

  • 10. Regulating drug release from pH- and temperature-responsive electrospun CTS-g-PNIPAAm/poly(ethylene oxide) hydrogel nanofibers.
    Yuan H; Li B; Liang K; Lou X; Zhang Y
    Biomed Mater; 2014 Aug; 9(5):055001. PubMed ID: 25135109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Preparation and degradation behavior of PELGE nanoparticles].
    Duan Y; Zhang Z; Tang Y; Lin Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Dec; 21(6):921-5. PubMed ID: 15646333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled release of growth hormone from thermosensitive triblock copolymer systems: In vitro and in vivo evaluation.
    Chen S; Singh J
    Int J Pharm; 2008 Mar; 352(1-2):58-65. PubMed ID: 18036752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. OChiPEG micelles proven to facilitate the transscleral delivery of rapamycin.
    Mourad F
    Invest Ophthalmol Vis Sci; 2012 Dec; 53(13):8138. PubMed ID: 23239868
    [No Abstract]   [Full Text] [Related]  

  • 14. pH responsive biodegradable nanogels for sustained release of bleomycin.
    Sahu P; Kashaw SK; Kushwah V; Sau S; Jain S; Iyer AK
    Bioorg Med Chem; 2017 Sep; 25(17):4595-4613. PubMed ID: 28734664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The degradation and biocompatibility of pH-sensitive biodegradable polyurethanes for intracellular multifunctional antitumor drug delivery.
    Zhou L; Liang D; He X; Li J; Tan H; Li J; Fu Q; Gu Q
    Biomaterials; 2012 Mar; 33(9):2734-45. PubMed ID: 22236829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and optimization of PMAA-chitosan-PEG nanoparticles for oral drug delivery.
    Pawar H; Douroumis D; Boateng JS
    Colloids Surf B Biointerfaces; 2012 Feb; 90():102-8. PubMed ID: 22037474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emerging hydrogel designs for controlled protein delivery.
    Bae KH; Kurisawa M
    Biomater Sci; 2016 Aug; 4(8):1184-92. PubMed ID: 27374633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pegnology: a review of PEG-ylated systems.
    Bhadra D; Bhadra S; Jain P; Jain NK
    Pharmazie; 2002 Jan; 57(1):5-29. PubMed ID: 11836932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ gel systems as 'smart' carriers for sustained ocular drug delivery.
    Agrawal AK; Das M; Jain S
    Expert Opin Drug Deliv; 2012 Apr; 9(4):383-402. PubMed ID: 22432690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis, characterization, biodegradability and biocompatibility of a temperature-sensitive PBLA-PEG-PBLA hydrogel as protein delivery system with low critical gelation concentration.
    Xu Y; Shen Y; Xiong Y; Li C; Sun C; Ouahab A; Tu J
    Drug Dev Ind Pharm; 2014 Sep; 40(9):1264-75. PubMed ID: 23855735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.