These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 16422119)

  • 61. A pH-sensitive nanocomposite microsphere based on chitosan and montmorillonite with in vitro reduction of the burst release effect.
    Hua S; Yang H; Wang A
    Drug Dev Ind Pharm; 2010 Sep; 36(9):1106-14. PubMed ID: 20334540
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Development of chitosan-based nanoparticles through inter-polymeric complexation for oral drug delivery.
    Jana S; Maji N; Nayak AK; Sen KK; Basu SK
    Carbohydr Polym; 2013 Oct; 98(1):870-6. PubMed ID: 23987423
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Characterization of ph- and thermosensitive hydrogel as a vehicle for controlled protein delivery.
    Shi W; Ji Y; Zhang X; Shu S; Wu Z
    J Pharm Sci; 2011 Mar; 100(3):886-95. PubMed ID: 20862775
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Review paper: chitosan derivatives as promising materials for controlled drug delivery.
    Prabaharan M
    J Biomater Appl; 2008 Jul; 23(1):5-36. PubMed ID: 18593819
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Drug delivery into the brain using poly(lactide-co-glycolide) microspheres.
    Menei P; Montero-Menei C; Venier MC; Benoit JP
    Expert Opin Drug Deliv; 2005 Mar; 2(2):363-76. PubMed ID: 16296760
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Sustained release of bee venom peptide from biodegradable thermosensitive PLGA-PEG-PLGA triblock copolymer-based hydrogels in vitro.
    Qiao M; Chen D; Ma X; Hu H
    Pharmazie; 2006 Mar; 61(3):199-202. PubMed ID: 16599259
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Dually responsive injectable hydrogel prepared by in situ cross-linking of glycol chitosan and benzaldehyde-capped PEO-PPO-PEO.
    Ding C; Zhao L; Liu F; Cheng J; Gu J; Dan S; Liu C; Qu X; Yang Z
    Biomacromolecules; 2010 Apr; 11(4):1043-51. PubMed ID: 20337439
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Hyaluronidase enzyme core-5-fluorouracil-loaded chitosan-PEG-gelatin polymer nanocomposites as targeted and controlled drug delivery vehicles.
    Rajan M; Raj V; Al-Arfaj AA; Murugan AM
    Int J Pharm; 2013 Sep; 453(2):514-22. PubMed ID: 23796828
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Novel in situ forming hydrogel based on xanthan and chitosan re-gelifying in liquids for local drug delivery.
    Huang J; Deng Y; Ren J; Chen G; Wang G; Wang F; Wu X
    Carbohydr Polym; 2018 Apr; 186():54-63. PubMed ID: 29456009
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Drug delivery systems based on biocompatible imino-chitosan hydrogels for local anticancer therapy.
    Ailincai D; Tartau Mititelu L; Marin L
    Drug Deliv; 2018 Nov; 25(1):1080-1090. PubMed ID: 29722585
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Preparation and in vitro evaluation of chitosan microgranules with clotrimazole.
    Szymańska E; Winnicka K
    Acta Pol Pharm; 2012; 69(3):509-13. PubMed ID: 22594265
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A robust pH-sensitive drug carrier: aqueous micelles mineralized by calcium phosphate based on chitosan.
    Lv Y; Huang H; Yang B; Liu H; Li Y; Wang J
    Carbohydr Polym; 2014 Oct; 111():101-7. PubMed ID: 25037334
    [TBL] [Abstract][Full Text] [Related]  

  • 73. PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release.
    Bhattarai N; Ramay HR; Gunn J; Matsen FA; Zhang M
    J Control Release; 2005 Apr; 103(3):609-24. PubMed ID: 15820408
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A Promising Biocompatible Platform: Lipid-Based and Bio-Inspired Smart Drug Delivery Systems for Cancer Therapy.
    Kim MW; Kwon SH; Choi JH; Lee A
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30518027
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Emerging pressure-release materials for drug delivery.
    Ariga K; Kawakami K; Hill JP
    Expert Opin Drug Deliv; 2013 Nov; 10(11):1465-9. PubMed ID: 23834331
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Synthesis of biodegradable polymers for controlled drug release.
    Ulbrich K; Pechar M; Strohalm J; Subr V; Ríhová B
    Ann N Y Acad Sci; 1997 Dec; 831():47-56. PubMed ID: 9616701
    [No Abstract]   [Full Text] [Related]  

  • 77. Controlled drug release from self-catalyzed poly(ortho esters).
    Ng SY; Vandamme T; Taylor MS; Heller J
    Ann N Y Acad Sci; 1997 Dec; 831():168-78. PubMed ID: 9616710
    [No Abstract]   [Full Text] [Related]  

  • 78. Improving long-term subcutaneous drug delivery by regulating material-bioenvironment interaction.
    Chen W; Yung BC; Qian Z; Chen X
    Adv Drug Deliv Rev; 2018 Mar; 127():20-34. PubMed ID: 29391221
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Materials for drug delivery: innovative solutions to address complex biological hurdles.
    Mitragotri S; Lahann J
    Adv Mater; 2012 Jul; 24(28):3717-23. PubMed ID: 22807037
    [No Abstract]   [Full Text] [Related]  

  • 80. Biodegradable polymeric nanoparticles as drug delivery devices.
    Soppimath KS; Aminabhavi TM; Kulkarni AR; Rudzinski WE
    J Control Release; 2001 Jan; 70(1-2):1-20. PubMed ID: 11166403
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.