These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 16422411)

  • 1. Influence of lipid shell physicochemical properties on ultrasound-induced microbubble destruction.
    Borden MA; Kruse DE; Caskey CF; Zhao S; Dayton PA; Ferrara KW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Nov; 52(11):1992-2002. PubMed ID: 16422411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Focal areas of increased lipid concentration on the coating of microbubbles during short tone-burst ultrasound insonification.
    Kooiman K; van Rooij T; Qin B; Mastik F; Vos HJ; Versluis M; Klibanov AL; de Jong N; Villanueva FS; Chen X
    PLoS One; 2017; 12(7):e0180747. PubMed ID: 28686673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid shedding from single oscillating microbubbles.
    Luan Y; Lajoinie G; Gelderblom E; Skachkov I; van der Steen AF; Vos HJ; Versluis M; De Jong N
    Ultrasound Med Biol; 2014 Aug; 40(8):1834-46. PubMed ID: 24798388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid-shelled vehicles: engineering for ultrasound molecular imaging and drug delivery.
    Ferrara KW; Borden MA; Zhang H
    Acc Chem Res; 2009 Jul; 42(7):881-92. PubMed ID: 19552457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental investigations of nonlinearities and destruction mechanisms of an experimental phospholipid-based ultrasound contrast agent.
    Casciaro S; Palmizio Errico R; Conversano F; Demitri C; Distante A
    Invest Radiol; 2007 Feb; 42(2):95-104. PubMed ID: 17220727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of nonlinear viscous stress in encapsulating shells of lipid-coated contrast agent microbubbles.
    Doinikov AA; Haac JF; Dayton PA
    Ultrasonics; 2009 Feb; 49(2):269-75. PubMed ID: 18990417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of the microbubble shell physicochemical properties on ultrasound-mediated drug delivery to the brain.
    Wu SY; Chen CC; Tung YS; Olumolade OO; Konofagou EE
    J Control Release; 2015 Aug; 212():30-40. PubMed ID: 26065734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of acoustic transmit parameters on the destruction of contrast microbubbles in vitro.
    Shi WT; Forsberg F; Vaidyanathan P; Tornes A; Ă˜stensen J; Goldberg BB
    Phys Med Biol; 2006 Aug; 51(16):4031-45. PubMed ID: 16885622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-linear response and viscoelastic properties of lipid-coated microbubbles: DSPC versus DPPC.
    van Rooij T; Luan Y; Renaud G; van der Steen AF; Versluis M; de Jong N; Kooiman K
    Ultrasound Med Biol; 2015 May; 41(5):1432-45. PubMed ID: 25724308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of binding on the subharmonic emissions from individual lipid-encapsulated microbubbles at transmit frequencies of 11 and 25 MHz.
    Helfield BL; Cherin E; Foster FS; Goertz DE
    Ultrasound Med Biol; 2013 Feb; 39(2):345-59. PubMed ID: 23219039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface phase behavior and microstructure of lipid/PEG-emulsifier monolayer-coated microbubbles.
    Borden MA; Pu G; Runner GJ; Longo ML
    Colloids Surf B Biointerfaces; 2004 Jun; 35(3-4):209-23. PubMed ID: 15261034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbubble characterization through acoustically induced deflation.
    Guidi F; Vos HJ; Mori R; de Jong N; Tortoli P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jan; 57(1):193-202. PubMed ID: 20040446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizing the subharmonic response of phospholipid-coated microbubbles for carotid imaging.
    Faez T; Emmer M; Docter M; Sijl J; Versluis M; de Jong N
    Ultrasound Med Biol; 2011 Jun; 37(6):958-70. PubMed ID: 21531498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of albumin microbubble dissolution in aqueous media.
    Khan AH; Dalvi SV
    Soft Matter; 2020 Feb; 16(8):2149-2163. PubMed ID: 32016261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The onset of microbubble vibration.
    Emmer M; van Wamel A; Goertz DE; de Jong N
    Ultrasound Med Biol; 2007 Jun; 33(6):941-9. PubMed ID: 17451868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-speed optical observations of contrast agent destruction.
    Bouakaz A; Versluis M; de Jong N
    Ultrasound Med Biol; 2005 Mar; 31(3):391-9. PubMed ID: 15749563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lung surfactant microbubbles increase lipophilic drug payload for ultrasound-targeted delivery.
    Sirsi SR; Fung C; Garg S; Tianning MY; Mountford PA; Borden MA
    Theranostics; 2013; 3(6):409-19. PubMed ID: 23781287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluid Viscosity Affects the Fragmentation and Inertial Cavitation Threshold of Lipid-Encapsulated Microbubbles.
    Helfield B; Black JJ; Qin B; Pacella J; Chen X; Villanueva FS
    Ultrasound Med Biol; 2016 Mar; 42(3):782-94. PubMed ID: 26674676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Condensation phase diagrams for lipid-coated perfluorobutane microbubbles.
    Mountford PA; Sirsi SR; Borden MA
    Langmuir; 2014 Jun; 30(21):6209-18. PubMed ID: 24824162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo characterization of ultrasound contrast agents: microbubble spectroscopy in a chicken embryo.
    Faez T; Skachkov I; Versluis M; Kooiman K; de Jong N
    Ultrasound Med Biol; 2012 Sep; 38(9):1608-17. PubMed ID: 22766113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.