These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 16422562)

  • 21. Influence of streaming potential on the transport and separation of charged spherical solutes in nanochannels subjected to particle-wall interactions.
    Das S; Chakraborty S
    Langmuir; 2009 Sep; 25(17):9863-72. PubMed ID: 19618905
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ionic transport in porous media for high zeta potentials.
    Gupta AK; Coelho D; Adler PM
    J Colloid Interface Sci; 2007 Oct; 314(2):733-47. PubMed ID: 17658544
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrokinetic flow control in microfluidic chips using a field-effect transistor.
    Horiuchi K; Dutta P
    Lab Chip; 2006 Jun; 6(6):714-23. PubMed ID: 16738721
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electroosmotically driven capillary transport of typical non-Newtonian biofluids in rectangular microchannels.
    Chakraborty S
    Anal Chim Acta; 2007 Dec; 605(2):175-84. PubMed ID: 18036381
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Measurement of electroosmotic and electrophoretic velocities using pulsed and sinusoidal electric fields.
    Sadek SH; Pimenta F; Pinho FT; Alves MA
    Electrophoresis; 2017 Apr; 38(7):1022-1037. PubMed ID: 27990654
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A method to determine zeta potential and Navier slip coefficient of microchannels.
    Park HM
    J Colloid Interface Sci; 2010 Jul; 347(1):132-41. PubMed ID: 20362996
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electroosmotic flow with Joule heating effects.
    Xuan X; Xu B; Sinton D; Li D
    Lab Chip; 2004 Jun; 4(3):230-6. PubMed ID: 15159784
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electroosmotic flow in microchannels with arbitrary geometry and arbitrary distribution of wall charge.
    Xuan X; Li D
    J Colloid Interface Sci; 2005 Sep; 289(1):291-303. PubMed ID: 16009236
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recursive estimation of transient inhomogeneous zeta potential in microchannel turns using velocity measurements.
    Park HM; Kim TW
    Biomed Microdevices; 2009 Feb; 11(1):231-41. PubMed ID: 18807196
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic electrical response of colloidal micro-spheres in compliant micro-channels from optical tweezers velocimetry.
    van Heiningen JA; Mohammadi A; Hill RJ
    Lab Chip; 2010 Aug; 10(15):1907-21. PubMed ID: 20508875
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrophoresis of a colloidal sphere in a spherical cavity with arbitrary zeta potential distributions.
    Keh HJ; Hsieh TH
    Langmuir; 2007 Jul; 23(15):7928-35. PubMed ID: 17569547
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electroosmosis in homogeneously charged micro- and nanoscale random porous media.
    Wang M; Chen S
    J Colloid Interface Sci; 2007 Oct; 314(1):264-73. PubMed ID: 17585928
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Smoluchowski equation and the colloidal charge reversal.
    Diehl A; Levin Y
    J Chem Phys; 2006 Aug; 125(5):054902. PubMed ID: 16942253
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models.
    Ford MD; Nikolov HN; Milner JS; Lownie SP; Demont EM; Kalata W; Loth F; Holdsworth DW; Steinman DA
    J Biomech Eng; 2008 Apr; 130(2):021015. PubMed ID: 18412502
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects.
    Jellema LC; Mey T; Koster S; Verpoorte E
    Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Particle tracking techniques for electrokinetic microchannel flows.
    Devasenathipathy S; Santiago JG; Takehara K
    Anal Chem; 2002 Aug; 74(15):3704-13. PubMed ID: 12175157
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Determination of the Navier slip coefficient of microchannels exploiting the streaming potential.
    Park HM
    Electrophoresis; 2012 Mar; 33(6):906-15. PubMed ID: 22528410
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flow field effect transistors with polarisable interface for EOF tunable microfluidic separation devices.
    Plecis A; Tazid J; Pallandre A; Martinhon P; Deslouis C; Chen Y; Haghiri-Gosnet AM
    Lab Chip; 2010 May; 10(10):1245-53. PubMed ID: 20445876
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electroosmotic flow in a rectangular channel with variable wall zeta-potential: comparison of numerical simulation with asymptotic theory.
    Datta S; Ghosal S; Patankar NA
    Electrophoresis; 2006 Feb; 27(3):611-9. PubMed ID: 16456890
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Experimental study on the fluid mechanics of blood sucking in the proboscis of a female mosquito.
    Lee SJ; Kim BH; Lee JY
    J Biomech; 2009 May; 42(7):857-64. PubMed ID: 19272604
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.