These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 16423390)

  • 1. Fabrication methods of porous metals for use in orthopaedic applications.
    Ryan G; Pandit A; Apatsidis DP
    Biomaterials; 2006 May; 27(13):2651-70. PubMed ID: 16423390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A porous tantalum trabecular metal: basic science.
    Cohen R
    Am J Orthop (Belle Mead NJ); 2002 Apr; 31(4):216-7. PubMed ID: 12008853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Porous-surfaced metallic implants for orthopedic applications.
    Pilliar RM
    J Biomed Mater Res; 1987 Apr; 21(A1 Suppl):1-33. PubMed ID: 3553195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly porous titanium scaffolds for orthopaedic applications.
    Dabrowski B; Swieszkowski W; Godlinski D; Kurzydlowski KJ
    J Biomed Mater Res B Appl Biomater; 2010 Oct; 95(1):53-61. PubMed ID: 20690174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Porous and porous-compact ceramics in orthopedics.
    Bieniek J; Swiecki Z
    Clin Orthop Relat Res; 1991 Nov; (272):88-94. PubMed ID: 1934757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ti6Ta4Sn alloy and subsequent scaffolding for bone tissue engineering.
    Li Y; Xiong J; Wong CS; Hodgson PD; Wen C
    Tissue Eng Part A; 2009 Oct; 15(10):3151-9. PubMed ID: 19351266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preliminary observations of bone ingrowth into porous materials.
    Robertson DM; Pierre L; Chahal R
    J Biomed Mater Res; 1976 May; 10(3):335-44. PubMed ID: 1270453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Biodeterioration and corrosion of metallic implants and prostheses].
    López GD
    Medicina (B Aires); 1993; 53(3):260-74. PubMed ID: 8114635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Powder metal-made orthopedic implants with porous surface for fixation by tissue ingrowth.
    Pilliar RM
    Clin Orthop Relat Res; 1983 Jun; (176):42-51. PubMed ID: 6851341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications.
    Nicula R; Lüthen F; Stir M; Nebe B; Burkel E
    Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel production method and in-vitro cell compatibility of porous Ti-6Al-4V alloy disk for hard tissue engineering.
    Bhattarai SR; Khalil KA; Dewidar M; Hwang PH; Yi HK; Kim HY
    J Biomed Mater Res A; 2008 Aug; 86(2):289-99. PubMed ID: 17957720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An overview of implant materials.
    Simon JP; Fabry G
    Acta Orthop Belg; 1991; 57(1):1-5. PubMed ID: 2038938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical applications of Trabecular Metal.
    Christie MJ
    Am J Orthop (Belle Mead NJ); 2002 Apr; 31(4):219-20. PubMed ID: 12008854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Replamineform porous biomaterials for hard tissue implant applications.
    White EW; Weber JN; Roy DM; Owen EL; Chiroff RT; White RA
    J Biomed Mater Res; 1975 Jul; 9(4):23-7. PubMed ID: 1176505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone ingrowth into a porous coated implant predicted by a mechano-regulatory tissue differentiation algorithm.
    Liu X; Niebur GL
    Biomech Model Mechanobiol; 2008 Aug; 7(4):335-44. PubMed ID: 17701434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The rate of bone ingrowth into porous metal.
    Cameron HU; Pilliar RM; Macnab I
    J Biomed Mater Res; 1976 Mar; 10(2):295-302. PubMed ID: 1254617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A high-modulus polymer for porous orthopedic implants: biomechanical compatibility of porous implants.
    Spector M; Michno MJ; Smarook WH; Kwiatkowski GT
    J Biomed Mater Res; 1978 Sep; 12(5):665-77. PubMed ID: 701302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macro-structural effect of metal surfaces treated using computer-assisted yttrium-aluminum-garnet laser scanning on bone-implant fixation.
    Hirao M; Sugamoto K; Tamai N; Oka K; Yoshikawa H; Mori Y; Sasaki T
    J Biomed Mater Res A; 2005 May; 73(2):213-22. PubMed ID: 15759257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone ingrowth in porous titanium implants produced by 3D fiber deposition.
    Li JP; Habibovic P; van den Doel M; Wilson CE; de Wijn JR; van Blitterswijk CA; de Groot K
    Biomaterials; 2007 Jun; 28(18):2810-20. PubMed ID: 17367852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Present status and future potential of enhancing bone healing using nanotechnology.
    Stylios G; Wan T; Giannoudis P
    Injury; 2007 Mar; 38 Suppl 1():S63-74. PubMed ID: 17383487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.