BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 16423439)

  • 1. Using perfusion fMRI to measure continuous changes in neural activity with learning.
    Olson IR; Rao H; Moore KS; Wang J; Detre JA; Aguirre GK
    Brain Cogn; 2006 Apr; 60(3):262-71. PubMed ID: 16423439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The time course of changes during motor sequence learning: a whole-brain fMRI study.
    Toni I; Krams M; Turner R; Passingham RE
    Neuroimage; 1998 Jul; 8(1):50-61. PubMed ID: 9698575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CASL fMRI of subcortico-cortical perfusion changes during memory-guided finger sequences.
    Garraux G; Hallett M; Talagala SL
    Neuroimage; 2005 Mar; 25(1):122-32. PubMed ID: 15734349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cerebral activation related to implicit sequence learning in a Double Serial Reaction Time task.
    van der Graaf FH; Maguire RP; Leenders KL; de Jong BM
    Brain Res; 2006 Apr; 1081(1):179-90. PubMed ID: 16533501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of large-scale networks in the brain using fMRI.
    Bellec P; Perlbarg V; Jbabdi S; Pélégrini-Issac M; Anton JL; Doyon J; Benali H
    Neuroimage; 2006 Feb; 29(4):1231-43. PubMed ID: 16246590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. fMRI investigation of cortical and subcortical networks in the learning of abstract and effector-specific representations of motor sequences.
    Bapi RS; Miyapuram KP; Graydon FX; Doya K
    Neuroimage; 2006 Aug; 32(2):714-27. PubMed ID: 16798015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence of developmental differences in implicit sequence learning: an fMRI study of children and adults.
    Thomas KM; Hunt RH; Vizueta N; Sommer T; Durston S; Yang Y; Worden MS
    J Cogn Neurosci; 2004 Oct; 16(8):1339-51. PubMed ID: 15509382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Category-specific organization of prefrontal response-facilitation during priming.
    Bunzeck N; Schütze H; Düzel E
    Neuropsychologia; 2006; 44(10):1765-76. PubMed ID: 16701731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acquisition of a new bimanual coordination pattern modulates the cerebral activations elicited by an intrinsic pattern: an fMRI study.
    Rémy F; Wenderoth N; Lipkens K; Swinnen SP
    Cortex; 2008 May; 44(5):482-93. PubMed ID: 18387582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural substrates of response-based sequence learning using fMRI.
    Bischoff-Grethe A; Goedert KM; Willingham DT; Grafton ST
    J Cogn Neurosci; 2004; 16(1):127-38. PubMed ID: 15006042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motor system: cortex, basal ganglia, and cerebellum.
    Jueptner M; Krukenberg M
    Neuroimaging Clin N Am; 2001 May; 11(2):203-19, viii. PubMed ID: 11489735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fractionation of the component processes underlying successful episodic encoding: a combined fMRI and divided-attention study.
    Uncapher MR; Rugg MD
    J Cogn Neurosci; 2008 Feb; 20(2):240-54. PubMed ID: 18275332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cerebral basis of mapping nonsymbolic numerical quantities onto abstract symbols: an fMRI training study.
    Lyons IM; Ansari D
    J Cogn Neurosci; 2009 Sep; 21(9):1720-35. PubMed ID: 18823231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel vibrotactile discrimination task for investigating the neural correlates of short-term learning with fMRI.
    Tang K; Staines WR; Black SE; McIlroy WE
    J Neurosci Methods; 2009 Mar; 178(1):65-74. PubMed ID: 19109997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compensatory cortical mechanisms in Parkinson's disease evidenced with fMRI during the performance of pre-learned sequential movements.
    Mallol R; Barrós-Loscertales A; López M; Belloch V; Parcet MA; Avila C
    Brain Res; 2007 May; 1147():265-71. PubMed ID: 17368575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural substrates for visual pattern recognition learning in Igo.
    Itoh K; Kitamura H; Fujii Y; Nakada T
    Brain Res; 2008 Aug; 1227():162-73. PubMed ID: 18621033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EEG and FMRI coregistration to investigate the cortical oscillatory activities during finger movement.
    Formaggio E; Storti SF; Avesani M; Cerini R; Milanese F; Gasparini A; Acler M; Pozzi Mucelli R; Fiaschi A; Manganotti P
    Brain Topogr; 2008 Dec; 21(2):100-11. PubMed ID: 18648924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal changes in neural activation during practice of information retrieval from short-term memory: an fMRI study.
    Koch K; Wagner G; von Consbruch K; Nenadic I; Schultz C; Ehle C; Reichenbach J; Sauer H; Schlösser R
    Brain Res; 2006 Aug; 1107(1):140-50. PubMed ID: 16843445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional neuroanatomy of mental rotation.
    Milivojevic B; Hamm JP; Corballis MC
    J Cogn Neurosci; 2009 May; 21(5):945-59. PubMed ID: 18702586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BOLD functional MRI in disease and pharmacological studies: room for improvement?
    Iannetti GD; Wise RG
    Magn Reson Imaging; 2007 Jul; 25(6):978-88. PubMed ID: 17499469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.