BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 16423700)

  • 21. Contrasting short-term plasticity at two sides of the mitral-granule reciprocal synapse in the mammalian olfactory bulb.
    Dietz SB; Murthy VN
    J Physiol; 2005 Dec; 569(Pt 2):475-88. PubMed ID: 16166156
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intrinsic conductances actively shape excitatory and inhibitory postsynaptic responses in olfactory bulb external tufted cells.
    Liu S; Shipley MT
    J Neurosci; 2008 Oct; 28(41):10311-22. PubMed ID: 18842890
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adrenergic receptor-mediated disinhibition of mitral cells triggers long-term enhancement of synchronized oscillations in the olfactory bulb.
    Pandipati S; Gire DH; Schoppa NE
    J Neurophysiol; 2010 Aug; 104(2):665-74. PubMed ID: 20538781
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glomerulus-specific synchronization of mitral cells in the olfactory bulb.
    Schoppa NE; Westbrook GL
    Neuron; 2001 Aug; 31(4):639-51. PubMed ID: 11545722
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Opposing inward and outward conductances regulate rebound discharges in olfactory mitral cells.
    Balu R; Strowbridge BW
    J Neurophysiol; 2007 Mar; 97(3):1959-68. PubMed ID: 17151219
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Presynaptic muscarinic receptors enhance glutamate release at the mitral/tufted to granule cell dendrodendritic synapse in the rat main olfactory bulb.
    Ghatpande AS; Gelperin A
    J Neurophysiol; 2009 Apr; 101(4):2052-61. PubMed ID: 19225175
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional properties of electrical synapses between inhibitory interneurons of neocortical layer 4.
    Gibson JR; Beierlein M; Connors BW
    J Neurophysiol; 2005 Jan; 93(1):467-80. PubMed ID: 15317837
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Complementary postsynaptic activity patterns elicited in olfactory bulb by stimulation of mitral/tufted and centrifugal fiber inputs to granule cells.
    Laaris N; Puche A; Ennis M
    J Neurophysiol; 2007 Jan; 97(1):296-306. PubMed ID: 17035366
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phasic stimuli evoke precisely timed spikes in intermittently discharging mitral cells.
    Balu R; Larimer P; Strowbridge BW
    J Neurophysiol; 2004 Aug; 92(2):743-53. PubMed ID: 15277594
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiple and opposing roles of cholinergic transmission in the main olfactory bulb.
    Castillo PE; Carleton A; Vincent JD; Lledo PM
    J Neurosci; 1999 Nov; 19(21):9180-91. PubMed ID: 10531421
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Two GABAergic intraglomerular circuits differentially regulate tonic and phasic presynaptic inhibition of olfactory nerve terminals.
    Shao Z; Puche AC; Kiyokage E; Szabo G; Shipley MT
    J Neurophysiol; 2009 Apr; 101(4):1988-2001. PubMed ID: 19225171
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intraglomerular gap junctions enhance interglomerular synchrony in a sparsely connected olfactory bulb network.
    Pouille F; McTavish TS; Hunter LE; Restrepo D; Schoppa NE
    J Physiol; 2017 Sep; 595(17):5965-5986. PubMed ID: 28640508
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transient activity induces a long-lasting increase in the excitability of olfactory bulb interneurons.
    Inoue T; Strowbridge BW
    J Neurophysiol; 2008 Jan; 99(1):187-99. PubMed ID: 17959743
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spontaneous field potentials in the glomeruli of the olfactory bulb: the leading role of juxtaglomerular cells.
    Karnup SV; Hayar A; Shipley MT; Kurnikova MG
    Neuroscience; 2006 Sep; 142(1):203-21. PubMed ID: 16876327
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interneurons produced in adulthood are required for the normal functioning of the olfactory bulb network and for the execution of selected olfactory behaviors.
    Breton-Provencher V; Lemasson M; Peralta MR; Saghatelyan A
    J Neurosci; 2009 Dec; 29(48):15245-57. PubMed ID: 19955377
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of spike timing-dependent plasticity of olfactory inputs in mitral cells in the rat olfactory bulb.
    Ma TF; Zhao XL; Cai L; Zhang N; Ren SQ; Ji F; Tian T; Lu W
    PLoS One; 2012; 7(4):e35001. PubMed ID: 22536347
    [TBL] [Abstract][Full Text] [Related]  

  • 37. GABAergic control of odour-induced activity in the frog olfactory bulb: possible GABAergic modulation of granule cell inhibitory action.
    Duchamp-Viret P; Duchamp A
    Neuroscience; 1993 Oct; 56(4):905-14. PubMed ID: 8284042
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiple modes of synaptic excitation of olfactory bulb granule cells.
    Balu R; Pressler RT; Strowbridge BW
    J Neurosci; 2007 May; 27(21):5621-32. PubMed ID: 17522307
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reciprocal intraglomerular excitation and intra- and interglomerular lateral inhibition between mouse olfactory bulb mitral cells.
    Urban NN; Sakmann B
    J Physiol; 2002 Jul; 542(Pt 2):355-67. PubMed ID: 12122137
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of odor stimulation on antidromic spikes in olfactory sensory neurons.
    Scott JW; Sherrill L
    J Neurophysiol; 2008 Dec; 100(6):3074-85. PubMed ID: 18842957
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.