BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 16423849)

  • 1. A possible role of the junctional face protein JP-45 in modulating Ca2+ release in skeletal muscle.
    Gouadon E; Schuhmeier RP; Ursu D; Anderson AA; Treves S; Zorzato F; Lehmann-Horn F; Melzer W
    J Physiol; 2006 Apr; 572(Pt 1):269-80. PubMed ID: 16423849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional interaction of CaV channel isoforms with ryanodine receptors studied in dysgenic myotubes.
    Schuhmeier RP; Gouadon E; Ursu D; Kasielke N; Flucher BE; Grabner M; Melzer W
    Biophys J; 2005 Mar; 88(3):1765-77. PubMed ID: 15626717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapamycin and FK506 reduce skeletal muscle voltage sensor expression and function.
    Avila G; Dirksen RT
    Cell Calcium; 2005 Jul; 38(1):35-44. PubMed ID: 15955561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transient loss of voltage control of Ca2+ release in the presence of maurocalcine in skeletal muscle.
    Pouvreau S; Csernoch L; Allard B; Sabatier JM; De Waard M; Ronjat M; Jacquemond V
    Biophys J; 2006 Sep; 91(6):2206-15. PubMed ID: 16782801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Altered inactivation of Ca2+ current and Ca2+ release in mouse muscle fibers deficient in the DHP receptor gamma1 subunit.
    Ursu D; Schuhmeier RP; Freichel M; Flockerzi V; Melzer W
    J Gen Physiol; 2004 Nov; 124(5):605-18. PubMed ID: 15504904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the sarcoplasmic reticulum in regulating the activity-dependent expression of the glycogen phosphorylase gene in contractile skeletal muscle cells.
    Vali S; Carlsen R; Pessah I; Gorin F
    J Cell Physiol; 2000 Nov; 185(2):184-99. PubMed ID: 11025440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of muscle ryanodine receptor calcium release channels by proteins in the sarcoplasmic reticulum lumen.
    Beard NA; Wei L; Dulhunty AF
    Clin Exp Pharmacol Physiol; 2009 Mar; 36(3):340-5. PubMed ID: 19278523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voltage-controlled Ca2+ release and entry flux in isolated adult muscle fibres of the mouse.
    Ursu D; Schuhmeier RP; Melzer W
    J Physiol; 2005 Jan; 562(Pt 2):347-65. PubMed ID: 15528246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Voltage dependence of cardiac excitation-contraction coupling: unitary Ca2+ current amplitude and open channel probability.
    Altamirano J; Bers DM
    Circ Res; 2007 Sep; 101(6):590-7. PubMed ID: 17641229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simvastatin triggers mitochondria-induced Ca2+ signaling alteration in skeletal muscle.
    Sirvent P; Mercier J; Vassort G; Lacampagne A
    Biochem Biophys Res Commun; 2005 Apr; 329(3):1067-75. PubMed ID: 15752763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deficiency of triad junction and contraction in mutant skeletal muscle lacking junctophilin type 1.
    Ito K; Komazaki S; Sasamoto K; Yoshida M; Nishi M; Kitamura K; Takeshima H
    J Cell Biol; 2001 Sep; 154(5):1059-67. PubMed ID: 11535622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium signaling in isolated skeletal muscle fibers investigated under "Silicone Voltage-Clamp" conditions.
    Collet C; Pouvreau S; Csernoch L; Allard B; Jacquemond V
    Cell Biochem Biophys; 2004; 40(2):225-36. PubMed ID: 15054224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Personal recollections on the discovery of the ryanodine receptors of muscle.
    Fleischer S
    Biochem Biophys Res Commun; 2008 Apr; 369(1):195-207. PubMed ID: 18182155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The 90-kDa junctional sarcoplasmic reticulum protein forms an integral part of a supramolecular triad complex in skeletal muscle.
    Froemming GR; Pette D; Ohlendieck K
    Biochem Biophys Res Commun; 1999 Aug; 261(3):603-9. PubMed ID: 10441473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RyR1-specific requirement for depolarization-induced Ca2+ sparks in urinary bladder smooth muscle.
    Fritz N; Morel JL; Jeyakumar LH; Fleischer S; Allen PD; Mironneau J; Macrez N
    J Cell Sci; 2007 Nov; 120(Pt 21):3784-91. PubMed ID: 17925380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amplitude modulation of nuclear Ca2+ signals in human skeletal myotubes: a possible role for nuclear Ca2+ buffering.
    Koopman WJ; Willems PH; Oosterhof A; van Kuppevelt TH; Gielen SC
    Cell Calcium; 2005 Aug; 38(2):141-52. PubMed ID: 16054687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential effects of voltage-dependent inactivation and local anesthetics on kinetic phases of Ca2+ release in frog skeletal muscle.
    Brum G; Piriz N; DeArmas R; Rios E; Stern M; Pizarro G
    Biophys J; 2003 Jul; 85(1):245-54. PubMed ID: 12829480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A calcium-induced calcium release mechanism mediated by calsequestrin.
    Lee YS; Keener JP
    J Theor Biol; 2008 Aug; 253(4):668-79. PubMed ID: 18538346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ca2+ stores regulate ryanodine receptor Ca2+ release channels via luminal and cytosolic Ca2+ sites.
    Laver DR
    Clin Exp Pharmacol Physiol; 2007 Sep; 34(9):889-96. PubMed ID: 17645636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ca2+ release in muscle fibers expressing R4892W and G4896V type 1 ryanodine receptor disease mutants.
    Lefebvre R; Legrand C; Groom L; Dirksen RT; Jacquemond V
    PLoS One; 2013; 8(1):e54042. PubMed ID: 23308296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.