These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 16424333)

  • 1. Covalently bridging gaps in single-walled carbon nanotubes with conducting molecules.
    Guo X; Small JP; Klare JE; Wang Y; Purewal MS; Tam IW; Hong BH; Caldwell R; Huang L; O'brien S; Yan J; Breslow R; Wind SJ; Hone J; Kim P; Nuckolls C
    Science; 2006 Jan; 311(5759):356-9. PubMed ID: 16424333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular electronic devices based on single-walled carbon nanotube electrodes.
    Feldman AK; Steigerwald ML; Guo X; Nuckolls C
    Acc Chem Res; 2008 Dec; 41(12):1731-41. PubMed ID: 18798657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct measurement of charge transport through helical poly(ethyl propiolate) nanorods wired into gaps in single walled carbon nanotubes.
    Wang N; Zhang Y; Yano K; Durkan C; Plank N; Welland ME; Unalan HE; Mann M; Amaratunga GA; Milne WI
    Nanotechnology; 2009 Mar; 20(10):105201. PubMed ID: 19417511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Miniature organic transistors with carbon nanotubes as quasi-one-dimensional electrodes.
    Qi P; Javey A; Rolandi M; Wang Q; Yenilmez E; Dai H
    J Am Chem Soc; 2004 Sep; 126(38):11774-5. PubMed ID: 15382895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon Electrode-Molecule Junctions: A Reliable Platform for Molecular Electronics.
    Jia C; Ma B; Xin N; Guo X
    Acc Chem Res; 2015 Sep; 48(9):2565-75. PubMed ID: 26190024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Why semiconducting single-walled carbon nanotubes are separated from their metallic counterparts.
    Lu J; Lai L; Luo G; Zhou J; Qin R; Wang D; Wang L; Mei WN; Li G; Gao Z; Nagase S; Maeda Y; Akasaka T; Yu D
    Small; 2007 Sep; 3(9):1566-76. PubMed ID: 17705313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conductance-controlled point functionalization of single-walled carbon nanotubes.
    Goldsmith BR; Coroneus JG; Khalap VR; Kane AA; Weiss GA; Collins PG
    Science; 2007 Jan; 315(5808):77-81. PubMed ID: 17204645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Narrowing SWNT diameter distribution using size-separated ferritin-based Fe catalysts.
    Durrer L; Greenwald J; Helbling T; Muoth M; Riek R; Hierold C
    Nanotechnology; 2009 Sep; 20(35):355601. PubMed ID: 19671985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of peptide--peptide interactions in stabilizing peptide-wrapped single-walled carbon nanotubes: a molecular dynamics study.
    Chiu CC; Dieckmann GR; Nielsen SO
    Biopolymers; 2009; 92(3):156-63. PubMed ID: 19226620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noncovalent functionalization as an alternative to oxidative acid treatment of single wall carbon nanotubes with applications for polymer composites.
    Simmons TJ; Bult J; Hashim DP; Linhardt RJ; Ajayan PM
    ACS Nano; 2009 Apr; 3(4):865-70. PubMed ID: 19334688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of chemically separated carbon nanotubes for nanoelectronics.
    Zhang L; Zaric S; Tu X; Wang X; Zhao W; Dai H
    J Am Chem Soc; 2008 Feb; 130(8):2686-91. PubMed ID: 18251484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noncovalent functionalization of single-walled carbon nanotubes.
    Zhao YL; Stoddart JF
    Acc Chem Res; 2009 Aug; 42(8):1161-71. PubMed ID: 19462997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics of electrodeposited single-walled carbon nanotube films.
    Kim SK; Choi HY; Lee HJ; Lee H
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3614-8. PubMed ID: 17252822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patterning of single-wall carbon nanotubes via a combined technique (chemical anchoring and photolithography) on patterned substrates.
    Jung MS; Jung SO; Jung DH; Ko YK; Jin YW; Kim J; Jung HT
    J Phys Chem B; 2005 Jun; 109(21):10584-9. PubMed ID: 16852284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aqueous dispersion and dielectrophoretic assembly of individual surface-synthesized single-walled carbon nanotubes.
    Burg BR; Schneider J; Muoth M; Durrer L; Helbling T; Schirmer NC; Schwamb T; Hierold C; Poulikakos D
    Langmuir; 2009 Jul; 25(14):7778-82. PubMed ID: 19537808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of adsorption of DNA on carbon nanotubes.
    Zhao X; Johnson JK
    J Am Chem Soc; 2007 Aug; 129(34):10438-45. PubMed ID: 17676840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-walled carbon nanotubes used as stationary phase in GC.
    Yuan LM; Ren CX; Li L; Ai P; Yan ZH; Zi M; Li ZY
    Anal Chem; 2006 Sep; 78(18):6384-90. PubMed ID: 16970312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-walled carbon nanotube-based coaxial nanowires: synthesis, characterization, and electrical properties.
    Zhang X; Lü Z; Wen M; Liang H; Zhang J; Liu Z
    J Phys Chem B; 2005 Jan; 109(3):1101-7. PubMed ID: 16851066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent progress in chemical detection with single-walled carbon nanotube networks.
    Vichchulada P; Zhang Q; Lay MD
    Analyst; 2007 Aug; 132(8):719-23. PubMed ID: 17646869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.