BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 16426059)

  • 1. Grand canonical Monte Carlo simulation of ligand-protein binding.
    Clark M; Guarnieri F; Shkurko I; Wiseman J
    J Chem Inf Model; 2006; 46(1):231-42. PubMed ID: 16426059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Grand canonical free-energy calculations of protein-ligand binding.
    Clark M; Meshkat S; Wiseman JS
    J Chem Inf Model; 2009 Apr; 49(4):934-43. PubMed ID: 19309088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fragment-based computation of binding free energies by systematic sampling.
    Clark M; Meshkat S; Talbot GT; Carnevali P; Wiseman JS
    J Chem Inf Model; 2009 Aug; 49(8):1901-13. PubMed ID: 19610599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligand mapping on protein surfaces by the 3D-RISM theory: toward computational fragment-based drug design.
    Imai T; Oda K; Kovalenko A; Hirata F; Kidera A
    J Am Chem Soc; 2009 Sep; 131(34):12430-40. PubMed ID: 19655800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling protein-small molecule interactions: structure and thermodynamics of noble gases binding in a cavity in mutant phage T4 lysozyme L99A.
    Mann G; Hermans J
    J Mol Biol; 2000 Sep; 302(4):979-89. PubMed ID: 10993736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Algorithms for computational solvent mapping of proteins.
    Kortvelyesi T; Dennis S; Silberstein M; Brown L; Vajda S
    Proteins; 2003 May; 51(3):340-51. PubMed ID: 12696046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein-ligand binding free energies from exhaustive docking.
    Purisima EO; Hogues H
    J Phys Chem B; 2012 Jun; 116(23):6872-9. PubMed ID: 22432509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte Carlo simulation of protein folding in the presence of residue-specific binding sites.
    Rossinsky E; Srebnik S
    Biopolymers; 2005 Dec; 79(5):259-68. PubMed ID: 16134169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular insight into pseudolysin inhibition using the MM-PBSA and LIE methods.
    Adekoya OA; Willassen NP; Sylte I
    J Struct Biol; 2006 Feb; 153(2):129-44. PubMed ID: 16376106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards understanding the mechanisms of molecular recognition by computer simulations of ligand-protein interactions.
    Verkhivker GM; Rejto PA; Bouzida D; Arthurs S; Colson AB; Freer ST; Gehlhaar DK; Larson V; Luty BA; Marrone T; Rose PW
    J Mol Recognit; 1999; 12(6):371-89. PubMed ID: 10611647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Method for computing protein binding affinity.
    Karney CF; Ferrara JE; Brunner S
    J Comput Chem; 2005 Feb; 26(3):243-51. PubMed ID: 15614799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of proximal His93 in nitric oxide binding to metmyoglobin. Application of continuum solvation in Monte Carlo protein simulations.
    Keserü GM; Menyhárd DK
    Biochemistry; 1999 May; 38(20):6614-22. PubMed ID: 10350480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calculation of the standard binding free energy of sparsomycin to the ribosomal peptidyl-transferase P-site using molecular dynamics simulations with restraining potentials.
    Ge X; Roux B
    J Mol Recognit; 2010; 23(2):128-41. PubMed ID: 20151411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational approach to de novo discovery of fragment binding for novel protein states.
    Konteatis ZD; Klon AE; Zou J; Meshkat S
    Methods Enzymol; 2011; 493():357-80. PubMed ID: 21371598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computation of binding free energy with molecular dynamics and grand canonical Monte Carlo simulations.
    Deng Y; Roux B
    J Chem Phys; 2008 Mar; 128(11):115103. PubMed ID: 18361618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A multistep approach to structure-based drug design: studying ligand binding at the human neutrophil elastase.
    Steinbrecher T; Case DA; Labahn A
    J Med Chem; 2006 Mar; 49(6):1837-44. PubMed ID: 16539369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of protein-ligand interaction sites using experimental and computational methods.
    Vajda S; Guarnieri F
    Curr Opin Drug Discov Devel; 2006 May; 9(3):354-62. PubMed ID: 16729732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular mechanics methods for predicting protein-ligand binding.
    Huang N; Kalyanaraman C; Bernacki K; Jacobson MP
    Phys Chem Chem Phys; 2006 Nov; 8(44):5166-77. PubMed ID: 17203140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fitting an inhibitor into the active site of thermolysin: a molecular dynamics case study.
    Wasserman ZR; Hodge CN
    Proteins; 1996 Feb; 24(2):227-37. PubMed ID: 8820489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular anchors with large stability gaps ensure linear binding free energy relationships for hydrophobic substituents.
    Rejto PA; Verkhivker GM
    Pac Symp Biocomput; 1998; ():362-73. PubMed ID: 9697196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.