BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 16426060)

  • 1. Physics-based scoring of protein-ligand complexes: enrichment of known inhibitors in large-scale virtual screening.
    Huang N; Kalyanaraman C; Irwin JJ; Jacobson MP
    J Chem Inf Model; 2006; 46(1):243-53. PubMed ID: 16426060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Virtual ligand screening against Escherichia coli dihydrofolate reductase: improving docking enrichment using physics-based methods.
    Bernacki K; Kalyanaraman C; Jacobson MP
    J Biomol Screen; 2005 Oct; 10(7):675-81. PubMed ID: 16170049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New scoring functions for virtual screening from molecular dynamics simulations with a quantum-refined force-field (QRFF-MD). Application to cyclin-dependent kinase 2.
    Ferrara P; Curioni A; Vangrevelinghe E; Meyer T; Mordasini T; Andreoni W; Acklin P; Jacoby E
    J Chem Inf Model; 2006; 46(1):254-63. PubMed ID: 16426061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-based approach to pharmacophore identification, in silico screening, and three-dimensional quantitative structure-activity relationship studies for inhibitors of Trypanosoma cruzi dihydrofolate reductase function.
    Schormann N; Senkovich O; Walker K; Wright DL; Anderson AC; Rosowsky A; Ananthan S; Shinkre B; Velu S; Chattopadhyay D
    Proteins; 2008 Dec; 73(4):889-901. PubMed ID: 18536013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein flexibility in ligand docking and virtual screening to protein kinases.
    Cavasotto CN; Abagyan RA
    J Mol Biol; 2004 Mar; 337(1):209-25. PubMed ID: 15001363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virtual screening against Mycobacterium tuberculosis dihydrofolate reductase: suggested workflow for compound prioritization using structure interaction fingerprints.
    Kumar A; Siddiqi MI
    J Mol Graph Model; 2008 Nov; 27(4):476-88. PubMed ID: 18829358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scoring ligand similarity in structure-based virtual screening.
    Zavodszky MI; Rohatgi A; Van Voorst JR; Yan H; Kuhn LA
    J Mol Recognit; 2009; 22(4):280-92. PubMed ID: 19235177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rescoring ligand docking poses.
    Zhong S; Zhang Y; Xiu Z
    Curr Opin Drug Discov Devel; 2010 May; 13(3):326-34. PubMed ID: 20443166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Virtual screening against highly charged active sites: identifying substrates of alpha-beta barrel enzymes.
    Kalyanaraman C; Bernacki K; Jacobson MP
    Biochemistry; 2005 Feb; 44(6):2059-71. PubMed ID: 15697231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of MM-PBSA rescoring of docking poses.
    Thompson DC; Humblet C; Joseph-McCarthy D
    J Chem Inf Model; 2008 May; 48(5):1081-91. PubMed ID: 18465849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative assessment of scoring functions on a diverse test set.
    Cheng T; Li X; Li Y; Liu Z; Wang R
    J Chem Inf Model; 2009 Apr; 49(4):1079-93. PubMed ID: 19358517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homology model-based virtual screening for GPCR ligands using docking and target-biased scoring.
    Radestock S; Weil T; Renner S
    J Chem Inf Model; 2008 May; 48(5):1104-17. PubMed ID: 18442221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding estimation after refinement, a new automated procedure for the refinement and rescoring of docked ligands in virtual screening.
    Rastelli G; Degliesposti G; Del Rio A; Sgobba M
    Chem Biol Drug Des; 2009 Mar; 73(3):283-6. PubMed ID: 19207463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast and accurate predictions of binding free energies using MM-PBSA and MM-GBSA.
    Rastelli G; Del Rio A; Degliesposti G; Sgobba M
    J Comput Chem; 2010 Mar; 31(4):797-810. PubMed ID: 19569205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Consensus scoring criteria for improving enrichment in virtual screening.
    Yang JM; Chen YF; Shen TW; Kristal BS; Hsu DF
    J Chem Inf Model; 2005; 45(4):1134-46. PubMed ID: 16045308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Virtual screening against metalloenzymes for inhibitors and substrates.
    Irwin JJ; Raushel FM; Shoichet BK
    Biochemistry; 2005 Sep; 44(37):12316-28. PubMed ID: 16156645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beyond the virtual screening paradigm: structure-based searching for new lead compounds.
    Schlosser J; Rarey M
    J Chem Inf Model; 2009 Apr; 49(4):800-9. PubMed ID: 19354328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ligand-based virtual screening by novelty detection with self-organizing maps.
    Hristozov D; Oprea TI; Gasteiger J
    J Chem Inf Model; 2007; 47(6):2044-62. PubMed ID: 17854167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-based virtual screening approach to identify novel classes of PTP1B inhibitors.
    Park H; Bhattarai BR; Ham SW; Cho H
    Eur J Med Chem; 2009 Aug; 44(8):3280-4. PubMed ID: 19269068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virtual screen for ligands of orphan G protein-coupled receptors.
    Bock JR; Gough DA
    J Chem Inf Model; 2005; 45(5):1402-14. PubMed ID: 16180917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.