These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 16426567)

  • 1. Searching for target sequences by p53 protein is influenced by DNA length.
    Brázda V; Jagelská EB; Fojta M; Palecek E
    Biochem Biophys Res Commun; 2006 Mar; 341(2):470-7. PubMed ID: 16426567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of p53 sequence-specific binding by DNA supercoiling.
    Palecek E; Brázda V; Jagelská E; Pecinka P; Karlovská L; Brázdová M
    Oncogene; 2004 Mar; 23(12):2119-27. PubMed ID: 14755248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tumor suppressor protein p53 binds preferentially to supercoiled DNA.
    Palecek E; Vlk D; Stanková V; Brázda V; Vojtesek B; Hupp TR; Schaper A; Jovin TM
    Oncogene; 1997 Oct; 15(18):2201-9. PubMed ID: 9393978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specific modulation of p53 binding to consensus sequence within supercoiled DNA by monoclonal antibodies.
    Brázda V; Paleĉek J; Pospísilová S; Vojtêsek B; Paleĉek E
    Biochem Biophys Res Commun; 2000 Jan; 267(3):934-9. PubMed ID: 10673394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA bending due to specific p53 and p53 core domain-DNA interactions visualized by electron microscopy.
    Cherny DI; Striker G; Subramaniam V; Jett SD; Palecek E; Jovin TM
    J Mol Biol; 1999 Dec; 294(4):1015-26. PubMed ID: 10588903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA-conformation is an important determinant of sequence-specific DNA binding by tumor suppressor p53.
    Kim E; Albrechtsen N; Deppert W
    Oncogene; 1997 Aug; 15(7):857-69. PubMed ID: 9266973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA topology influences p53 sequence-specific DNA binding through structural transitions within the target sites.
    Jagelská EB; Brázda V; Pecinka P; Palecek E; Fojta M
    Biochem J; 2008 May; 412(1):57-63. PubMed ID: 18271758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Derivation of the consensus DNA-binding sequence for p63 reveals unique requirements that are distinct from p53.
    Ortt K; Sinha S
    FEBS Lett; 2006 Aug; 580(18):4544-50. PubMed ID: 16870177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cognate DNA stabilizes the tumor suppressor p53 and prevents misfolding and aggregation.
    Ishimaru D; Ano Bom AP; Lima LM; Quesado PA; Oyama MF; de Moura Gallo CV; Cordeiro Y; Silva JL
    Biochemistry; 2009 Jul; 48(26):6126-35. PubMed ID: 19505151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutations at position 277 modify the DNA-binding specificity of human p53 in vitro.
    Chène P
    Biochem Biophys Res Commun; 1999 Sep; 263(1):1-5. PubMed ID: 10486243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recognition of cisplatin-damaged DNA by p53 protein: critical role of the p53 C-terminal domain.
    Pivonková H; Brázdová M; Kaspárková J; Brabec V; Fojta M
    Biochem Biophys Res Commun; 2006 Jan; 339(2):477-84. PubMed ID: 16300733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. p63 consensus DNA-binding site: identification, analysis and application into a p63MH algorithm.
    Perez CA; Ott J; Mays DJ; Pietenpol JA
    Oncogene; 2007 Nov; 26(52):7363-70. PubMed ID: 17563751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of transition metals on binding of p53 protein to supercoiled DNA and to consensus sequence in DNA fragments.
    Palecek E; Brázdová M; Cernocká H; Vlk D; Brázda V; Vojtesek B
    Oncogene; 1999 Jun; 18(24):3617-25. PubMed ID: 10380883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis of restoring sequence-specific DNA binding and transactivation to mutant p53 by suppressor mutations.
    Suad O; Rozenberg H; Brosh R; Diskin-Posner Y; Kessler N; Shimon LJ; Frolow F; Liran A; Rotter V; Shakked Z
    J Mol Biol; 2009 Jan; 385(1):249-65. PubMed ID: 18996393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of the human p53 core domain in the absence of DNA.
    Wang Y; Rosengarth A; Luecke H
    Acta Crystallogr D Biol Crystallogr; 2007 Mar; 63(Pt 3):276-81. PubMed ID: 17327663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A label-free electrochemical test for DNA-binding activities of tumor suppressor protein p53 using immunoprecipitation at magnetic beads.
    Nemcová K; Havran L; Sebest P; Brázdová M; Pivonková H; Fojta M
    Anal Chim Acta; 2010 Jun; 668(2):166-70. PubMed ID: 20493293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequestering of p53 into DNA-protein filaments revealed by electron microscopy.
    Cherny DI; Brázdova M; Palecek J; Palecek E; Jovin TM
    Biophys Chem; 2005 Apr; 114(2-3):261-71. PubMed ID: 15829361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding of p53 and its core domain to supercoiled DNA.
    Palecek E; Brázdová M; Brázda V; Palecek J; Billová S; Subramaniam V; Jovin TM
    Eur J Biochem; 2001 Feb; 268(3):573-81. PubMed ID: 11168396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA binding and 3'-5' exonuclease activity in the murine alternatively-spliced p53 protein.
    Shakked Z; Yavnilovitch M; Kalb Gilboa AJ; Kessler N; Wolkowicz R; Rotter V; Haran TE
    Oncogene; 2002 Aug; 21(33):5117-26. PubMed ID: 12140762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of magnesium ion on the binding of p53 DNA-binding domain to DNA-response elements.
    Xue Y; Wang S; Feng X
    J Biochem; 2009 Jul; 146(1):77-85. PubMed ID: 19297420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.