These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 164269)
21. Cleaving the β--O--4 bonds of lignin model compounds in an acidic ionic liquid, 1-H-3-methylimidazolium chloride: an optional strategy for the degradation of lignin. Jia S; Cox BJ; Guo X; Zhang ZC; Ekerdt JG ChemSusChem; 2010 Sep; 3(9):1078-84. PubMed ID: 20677206 [TBL] [Abstract][Full Text] [Related]
22. alpha-Santonin 1,2-reductase and its role in the formation of dihydrosantonin and lumisantonin by Pseudomonas cichorii S. Naik U; Mavuinkurve S Can J Microbiol; 1987 Aug; 33(8):658-62. PubMed ID: 3690421 [TBL] [Abstract][Full Text] [Related]
23. Anaerobic degradation of veratrylglycerol-beta-guaiacyl ether and guaiacoxyacetic acid by mixed rumen bacteria. Chen W; Supanwong K; Ohmiya K; Shimizu S; Kawakami H Appl Environ Microbiol; 1985 Dec; 50(6):1451-6. PubMed ID: 3841472 [TBL] [Abstract][Full Text] [Related]
24. Detection and localization of a new enzyme catalyzing the beta-aryl ether cleavage in the soil bacterium (Pseudomonas paucimobilis SYK-6). Masai E; Katayama Y; Nishikawa S; Yamasaki M; Morohoshi N; Haraguchi T FEBS Lett; 1989 Jun; 249(2):348-52. PubMed ID: 2737293 [TBL] [Abstract][Full Text] [Related]
25. Carbon Source-Dependent Inducible Metabolism of Veratryl Alcohol and Ferulic Acid in Pseudomonas putida CSV86. Mohan K; Phale PS Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28188206 [No Abstract] [Full Text] [Related]
26. Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. Bourbonnais R; Paice MG FEBS Lett; 1990 Jul; 267(1):99-102. PubMed ID: 2365094 [TBL] [Abstract][Full Text] [Related]
27. Effect of Mn(II) on reactions catalyzed by lignin peroxidase from Phanerochaete chrysosporium. Bono JJ; Goulas P; Boe JF; Portet N; Seris JL Eur J Biochem; 1990 Aug; 192(1):189-93. PubMed ID: 2401291 [TBL] [Abstract][Full Text] [Related]
28. The model humification of lignin preparation. I. The humification of Björkman lignin isolated from the rye straw. Wojtaś-Wasilewska M; Trojanowski J; Stepniewska Z Acta Microbiol Pol A; 1973; 5(1):37-48. PubMed ID: 4737421 [No Abstract] [Full Text] [Related]
29. The decomposition of veratrylglycerol-beta-coniferyl ether by Agrobacterium sp. Trojanowski J; Wojtaś-Wasilewska M; Junosza-Wolska B Acta Microbiol Pol B; 1970; 2(1):13-22. PubMed ID: 5419695 [No Abstract] [Full Text] [Related]
30. Biomimetic oxidation of lignin model compounds by simple inorganic complexes. Huynh VB Biochem Biophys Res Commun; 1986 Sep; 139(3):1104-10. PubMed ID: 3767993 [TBL] [Abstract][Full Text] [Related]
31. Initial reactions in the oxidation of ethylbenzene by Pseudomonas putida. Gibson DT; Gschwendt B; Yeh WK; Kobal VM Biochemistry; 1973 Apr; 12(8):1520-8. PubMed ID: 4699984 [No Abstract] [Full Text] [Related]
32. Modification phenomena of solid-state lignin caused by electron-abstracting oxidative systems. Barsberg S Arch Biochem Biophys; 2002 Aug; 404(1):62-70. PubMed ID: 12127070 [TBL] [Abstract][Full Text] [Related]
33. Dioxygenolytic cleavage of aryl ether bonds: 1,2-dihydro-1,2-dihydroxy-4-carboxybenzophenone as evidence for initial 1,2-dioxygenation in 3- and 4-carboxy biphenyl ether degradation. Engesser KH; Fietz W; Fischer P; Schulte P; Knackmuss HJ FEMS Microbiol Lett; 1990 Jun; 57(3):317-21. PubMed ID: 2210344 [TBL] [Abstract][Full Text] [Related]
34. Lignin peroxidase L3 from Phlebia radiata. Pre-steady-state and steady-state studies with veratryl alcohol and a non-phenolic lignin model compound 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol. Lundell T; Wever R; Floris R; Harvey P; Hatakka A; Brunow G; Schoemaker H Eur J Biochem; 1993 Feb; 211(3):391-402. PubMed ID: 8436103 [TBL] [Abstract][Full Text] [Related]
35. Ligninase of Phanerochaete chrysosporium. Mechanism of its degradation of the non-phenolic arylglycerol beta-aryl ether substructure of lignin. Kirk TK; Tien M; Kersten PJ; Mozuch MD; Kalyanaraman B Biochem J; 1986 May; 236(1):279-87. PubMed ID: 3024619 [TBL] [Abstract][Full Text] [Related]
36. The metabolism of p-fluorophenylacetic acid by a Pseudomonas sp. I. Isolation and identification of intermediates in degradation. Harper DB; Blakley ER Can J Microbiol; 1971 May; 17(5):635-44. PubMed ID: 4325920 [No Abstract] [Full Text] [Related]
37. Chemical characterization and sorption capacity measurements of degraded newsprint from a landfill. Chen L; Nanny MA; Knappe DR; Wagner TB; Ratasuk N Environ Sci Technol; 2004 Jul; 38(13):3542-50. PubMed ID: 15296303 [TBL] [Abstract][Full Text] [Related]
38. [Antibiotics of an aromatic nature from Pseudomonas cepacia]. Smirnov VV; Kiprianova EA; Dodatko TA; Garagulia AD; Kliuev NA Mikrobiol Zh (1978); 1991; 53(5):41-5. PubMed ID: 1724281 [TBL] [Abstract][Full Text] [Related]
39. Microbiological transformations of terpenes. XX. Fermentation of camphene by a soil pseudomonad (Camphene strain). Khanchandani KS; Bhattacharyya PK Indian J Biochem Biophys; 1973 Dec; 10(4):261-5. PubMed ID: 4792942 [No Abstract] [Full Text] [Related]
40. Biodegradation of lignin by Pseudomonas sp. Q18 and the characterization of a novel bacterial DyP-type peroxidase. Yang C; Yue F; Cui Y; Xu Y; Shan Y; Liu B; Zhou Y; Lü X J Ind Microbiol Biotechnol; 2018 Oct; 45(10):913-927. PubMed ID: 30051274 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]