These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 16427060)
1. Role of endplates in contributing to compression behaviors of motion segments and intervertebral discs. MacLean JJ; Owen JP; Iatridis JC J Biomech; 2007; 40(1):55-63. PubMed ID: 16427060 [TBL] [Abstract][Full Text] [Related]
2. Time-dependent compressive deformation of the ageing spine: relevance to spinal stenosis. Pollintine P; van Tunen MS; Luo J; Brown MD; Dolan P; Adams MA Spine (Phila Pa 1976); 2010 Feb; 35(4):386-94. PubMed ID: 20110846 [TBL] [Abstract][Full Text] [Related]
3. Contribution of vertebral [corrected] bodies, endplates, and intervertebral discs to the compression creep of spinal motion segments. van der Veen AJ; Mullender MG; Kingma I; van Dieen JH; Smit TH J Biomech; 2008; 41(6):1260-8. PubMed ID: 18328489 [TBL] [Abstract][Full Text] [Related]
4. Dependence of mechanical behavior of the murine tail disc on regional material properties: a parametric finite element study. Hsieh AH; Wagner DR; Cheng LY; Lotz JC J Biomech Eng; 2005 Dec; 127(7):1158-67. PubMed ID: 16502658 [TBL] [Abstract][Full Text] [Related]
5. Creep bulging deformation of intervertebral disc under axial compression. Pei BQ; Li H; Li DY; Fan YB; Wang C; Wu SQ Biomed Mater Eng; 2014; 24(1):191-8. PubMed ID: 24211898 [TBL] [Abstract][Full Text] [Related]
6. Effects of torsion on intervertebral disc gene expression and biomechanics, using a rat tail model. Barbir A; Godburn KE; Michalek AJ; Lai A; Monsey RD; Iatridis JC Spine (Phila Pa 1976); 2011 Apr; 36(8):607-14. PubMed ID: 20736890 [TBL] [Abstract][Full Text] [Related]
7. Young investigator award winner: validation of the mouse and rat disc as mechanical models of the human lumbar disc. Elliott DM; Sarver JJ Spine (Phila Pa 1976); 2004 Apr; 29(7):713-22. PubMed ID: 15087791 [TBL] [Abstract][Full Text] [Related]
8. Different effects of static versus cyclic compressive loading on rat intervertebral disc height and water loss in vitro. Masuoka K; Michalek AJ; MacLean JJ; Stokes IA; Iatridis JC Spine (Phila Pa 1976); 2007 Aug; 32(18):1974-9. PubMed ID: 17700443 [TBL] [Abstract][Full Text] [Related]
9. Effects of enzymatic digestion on compressive properties of rat intervertebral discs. Barbir A; Michalek AJ; Abbott RD; Iatridis JC J Biomech; 2010 Apr; 43(6):1067-73. PubMed ID: 20116063 [TBL] [Abstract][Full Text] [Related]
10. Quasi-static and dynamic properties of the intervertebral disc: experimental study and model parameter determination for the porcine lumbar motion segment. Araújo ÂR; Peixinho N; Pinho AC; Claro JC Acta Bioeng Biomech; 2015; 17(4):59-66. PubMed ID: 26900017 [TBL] [Abstract][Full Text] [Related]
11. Fluid-flow dependent response of intervertebral discs under cyclic loading: On the role of specimen preparation and preconditioning. Schmidt H; Schilling C; Reyna ALP; Shirazi-Adl A; Dreischarf M J Biomech; 2016 Apr; 49(6):846-856. PubMed ID: 26549766 [TBL] [Abstract][Full Text] [Related]
12. Finite element analysis predicts experimental failure patterns in vertebral bodies loaded via intervertebral discs up to large deformation. Clouthier AL; Hosseini HS; Maquer G; Zysset PK Med Eng Phys; 2015 Jun; 37(6):599-604. PubMed ID: 25922211 [TBL] [Abstract][Full Text] [Related]
13. Clarification of the mechanical behaviour of spinal motion segments through a three-dimensional poroelastic mixed finite element model. Wu JS; Chen JH Med Eng Phys; 1996 Apr; 18(3):215-24. PubMed ID: 8718947 [TBL] [Abstract][Full Text] [Related]
14. Limitations of the standard linear solid model of intervertebral discs subject to prolonged loading and low-frequency vibration in axial compression. Li S; Patwardhan AG; Amirouche FM; Havey R; Meade KP J Biomech; 1995 Jul; 28(7):779-90. PubMed ID: 7657676 [TBL] [Abstract][Full Text] [Related]
15. Vertebral fractures and separations of endplates after traumatic loading of adolescent porcine spines with experimentally-induced disc degeneration. Baranto A; Ekström L; Holm S; Hellström M; Hansson HA; Swärd L Clin Biomech (Bristol); 2005 Dec; 20(10):1046-54. PubMed ID: 16102879 [TBL] [Abstract][Full Text] [Related]
16. Mechanical differences between lumbar and tail discs in the mouse. Sarver JJ; Elliott DM J Orthop Res; 2005 Jan; 23(1):150-5. PubMed ID: 15607887 [TBL] [Abstract][Full Text] [Related]
17. How healthy discs herniate: a biomechanical and microstructural study investigating the combined effects of compression rate and flexion. Wade KR; Robertson PA; Thambyah A; Broom ND Spine (Phila Pa 1976); 2014 Jun; 39(13):1018-28. PubMed ID: 24503692 [TBL] [Abstract][Full Text] [Related]
18. An in vitro organ culturing system for intervertebral disc explants with vertebral endplates: a feasibility study with ovine caudal discs. Gantenbein B; Grünhagen T; Lee CR; van Donkelaar CC; Alini M; Ito K Spine (Phila Pa 1976); 2006 Nov; 31(23):2665-73. PubMed ID: 17077734 [TBL] [Abstract][Full Text] [Related]
19. The effect of cyclic compression on the mechanical properties of the inter-vertebral disc: an in vivo study in a rat tail model. Ching CT; Chow DH; Yao FY; Holmes AD Clin Biomech (Bristol); 2003 Mar; 18(3):182-9. PubMed ID: 12620780 [TBL] [Abstract][Full Text] [Related]
20. The effects of exogenous crosslinking on hydration and fluid flow in the intervertebral disc subjected to compressive creep loading and unloading. Chuang SY; Popovich JM; Lin LC; Hedman TP Spine (Phila Pa 1976); 2010 Nov; 35(24):E1362-6. PubMed ID: 21030899 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]