BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 1642720)

  • 1. Muscle metabolism during repeated exercise studied by 31P-MRS.
    Yoshida T; Watari H
    Ann Physiol Anthropol; 1992 May; 11(3):241-50. PubMed ID: 1642720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 31P-nuclear magnetic resonance spectroscopy study of the time course of energy metabolism during exercise and recovery.
    Yoshida T; Watari H
    Eur J Appl Physiol Occup Physiol; 1993; 66(6):494-9. PubMed ID: 8354247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic consequences of repeated exercise in long distance runners.
    Yoshida T; Watari H
    Eur J Appl Physiol Occup Physiol; 1993; 67(3):261-5. PubMed ID: 8223541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The rate of phosphocreatine hydrolysis and resynthesis in exercising muscle in humans using 31P-MRS.
    Yoshida T
    J Physiol Anthropol Appl Human Sci; 2002 Sep; 21(5):247-55. PubMed ID: 12491822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in intracellular pH during repeated exercise.
    Yoshida T; Watari H
    Eur J Appl Physiol Occup Physiol; 1993; 67(3):274-8. PubMed ID: 8223543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of cardiac transplantation on bioenergetic abnormalities of skeletal muscle in congestive heart failure.
    Stratton JR; Kemp GJ; Daly RC; Yacoub M; Rajagopalan B
    Circulation; 1994 Apr; 89(4):1624-31. PubMed ID: 8149530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous 31P MRS of the soleus and gastrocnemius in Sherpas during graded calf muscle exercise.
    Allen PS; Matheson GO; Zhu G; Gheorgiu D; Dunlop RS; Falconer T; Stanley C; Hochachka PW
    Am J Physiol; 1997 Sep; 273(3 Pt 2):R999-1007. PubMed ID: 9321879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exercise-induced splitting of the inorganic phosphate peak: investigation by time-resolved 31P-nuclear magnetic resonance spectroscopy.
    Yoshida T; Watari H
    Eur J Appl Physiol Occup Physiol; 1994; 69(6):465-73. PubMed ID: 7713064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A metabolism study of human masseter muscle by 31P magnetic resonance spectroscopy during long periods of exercise and recovery.
    Sappey-Marinier D; Dheyriat A; Lissac M; Frutoso J; Mallet JJ; Bonmartin A
    Eur J Oral Sci; 1998 Feb; 106(1):552-8. PubMed ID: 9527354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle metabolism in older subjects using 31P magnetic resonance spectroscopy.
    McCully KK; Forciea MA; Hack LM; Donlon E; Wheatley RW; Oatis CA; Goldberg T; Chance B
    Can J Physiol Pharmacol; 1991 May; 69(5):576-80. PubMed ID: 1650649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Forearm metabolic asymmetry detected by 31P-NMR during submaximal exercise.
    Minotti JR; Johnson EC; Hudson TL; Sibbitt RR; Wise LE; Fukushima E; Icenogle MV
    J Appl Physiol (1985); 1989 Jul; 67(1):324-9. PubMed ID: 2759961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of active and passive recoveries on splitting of the inorganic phosphate peak determined by 31P-nuclear magnetic resonance spectroscopy.
    Yoshida T; Watari H; Tagawa K
    NMR Biomed; 1996 Feb; 9(1):13-9. PubMed ID: 8842028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of ramp slope on intracellular pH threshold during progressive exercise.
    Iwanaga K; Sakurai M; Minami T; Kato Y; Kikuchi Y
    Ann Physiol Anthropol; 1993 May; 12(3):159-64. PubMed ID: 8373473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Further impairment of muscle phosphate kinetics by lengthening exercise in DMD/BMD carriers. An in vivo 31P-NMR spectroscopy study.
    Barbiroli B; McCully KK; Iotti S; Lodi R; Zaniol P; Chance B
    J Neurol Sci; 1993 Oct; 119(1):65-73. PubMed ID: 8246012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 31P-magnetic resonance spectroscopy of leg muscle metabolism during exercise in children and adults.
    Zanconato S; Buchthal S; Barstow TJ; Cooper DM
    J Appl Physiol (1985); 1993 May; 74(5):2214-8. PubMed ID: 8335550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abnormal skeletal muscle bioenergetics during exercise in patients with heart failure: role of reduced muscle blood flow.
    Wiener DH; Fink LI; Maris J; Jones RA; Chance B; Wilson JR
    Circulation; 1986 Jun; 73(6):1127-36. PubMed ID: 3698247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transient changes in muscle high-energy phosphates during moderate exercise.
    Marsh GD; Paterson DH; Potwarka JJ; Thompson RT
    J Appl Physiol (1985); 1993 Aug; 75(2):648-56. PubMed ID: 8226464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic disturbances during short exercises in dermatomyositis revealed by real-time functional 31P magnetic resonance spectroscopy.
    Pfleiderer B; Lange J; Loske KD; Sunderkötter C
    Rheumatology (Oxford); 2004 Jun; 43(6):696-703. PubMed ID: 15054156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coincident thresholds in intracellular phosphorylation potential and pH during progressive exercise.
    Marsh GD; Paterson DH; Thompson RT; Driedger AA
    J Appl Physiol (1985); 1991 Sep; 71(3):1076-81. PubMed ID: 1757303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-energy phosphate metabolism during two bouts of progressive calf exercise in humans measured by phosphorus-31 magnetic resonance spectroscopy.
    Schocke MF; Esterhammer R; Arnold W; Kammerlander C; Burtscher M; Fraedrich G; Jaschke WR; Greiner A
    Eur J Appl Physiol; 2005 Jan; 93(4):469-79. PubMed ID: 15517340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.