These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 1642721)

  • 1. Blood flow during muscle contraction and relaxation in rhythmic exercise at different intensities.
    Kagaya A; Ogita F
    Ann Physiol Anthropol; 1992 May; 11(3):251-6. PubMed ID: 1642721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relative contraction force producing a reduction in calf blood flow by superimposing forearm exercise on lower leg exercise.
    Kagaya A
    Eur J Appl Physiol Occup Physiol; 1993; 66(4):309-14. PubMed ID: 8495691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brachial arterial blood flow during static handgrip exercise of short duration at varying intensities studied by a Doppler ultrasound method.
    Kagaya A; Homma S
    Acta Physiol Scand; 1997 Jul; 160(3):257-65. PubMed ID: 9246389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced exercise hyperaemia in claf muscles working at high contraction frequencies.
    Kagaya A
    Eur J Appl Physiol Occup Physiol; 1992; 64(4):298-303. PubMed ID: 1592053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time course and magnitude of blood flow changes in the human quadriceps muscles during and following rhythmic exercise.
    Walløe L; Wesche J
    J Physiol; 1988 Nov; 405():257-73. PubMed ID: 3255792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics and effectiveness of vasodilatory and pressor compensation for reduced relaxation time during rhythmic forearm contractions.
    Bentley RF; Poitras VJ; Hong T; Tschakovsky ME
    Exp Physiol; 2017 Jun; 102(6):621-634. PubMed ID: 28397384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alterations in the rheological flow profile in conduit femoral artery during rhythmic thigh muscle contractions in humans.
    Osada T; Rådegran G
    Jpn J Physiol; 2005 Feb; 55(1):19-28. PubMed ID: 15796786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of contraction frequency on leg blood flow during knee extension exercise in humans.
    Hoelting BD; Scheuermann BW; Barstow TJ
    J Appl Physiol (1985); 2001 Aug; 91(2):671-9. PubMed ID: 11457780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Opposing effects of shear-mediated dilation and myogenic constriction on artery diameter in response to handgrip exercise in humans.
    Atkinson CL; Carter HH; Naylor LH; Dawson EA; Marusic P; Hering D; Schlaich MP; Thijssen DH; Green DJ
    J Appl Physiol (1985); 2015 Oct; 119(8):858-64. PubMed ID: 26294751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in exercising limb blood flow variability between cardiac and muscle contraction cycle related analysis during dynamic knee extensor.
    Osada T; Rådegran G
    J Sports Med Phys Fitness; 2006 Dec; 46(4):590-7. PubMed ID: 17119525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The exercise pressor response to sustained handgrip does not augment blood flow in the contracting forearm skeletal muscle.
    Hansen J; Jacobsen TN; Amtorp O
    Acta Physiol Scand; 1993 Dec; 149(4):419-25. PubMed ID: 8128890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vasoconstrictor responsiveness in contracting human muscle: influence of contraction frequency, contractile work, and metabolic rate.
    Kruse NT; Hughes WE; Ueda K; Casey DP
    Eur J Appl Physiol; 2017 Aug; 117(8):1697-1706. PubMed ID: 28624852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exhausting handgrip exercise reduces the blood flow in the active calf muscle exercising at low intensity.
    Kagaya A; Saito M; Ogita F; Shinohara M
    Eur J Appl Physiol Occup Physiol; 1994; 68(3):252-7. PubMed ID: 8039522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alterations in the blood velocity profile influence the blood flow response during muscle contractions and relaxations.
    Osada T; Rådegran G
    J Physiol Sci; 2006 Jun; 56(3):195-203. PubMed ID: 16839453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasma potassium concentration and doppler blood flow during and following submaximal handgrip contractions.
    Jensen BR; Fallentin N; Byström S; Sjøgaard G
    Acta Physiol Scand; 1993 Feb; 147(2):203-11. PubMed ID: 8475747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of calf muscle contractions on blood flow parameters measured in the arteria femoralis.
    Leyk D; Essfeld D; Baum K; Stegemann J
    Int J Sports Med; 1992 Nov; 13(8):588-93. PubMed ID: 1487343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early leg blood flow adjustment during dynamic foot plantarflexions in upright and supine body position.
    Leyk D; Essfeld D; Baum K; Stegemann J
    Int J Sports Med; 1994 Nov; 15(8):447-52. PubMed ID: 7890456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal inhomogeneity in brachial artery blood flow during forearm exercise.
    Robergs RA; Icenogle MV; Hudson TL; Greene ER
    Med Sci Sports Exerc; 1997 Aug; 29(8):1021-7. PubMed ID: 9268958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle blood flow at onset of dynamic exercise in humans.
    Rådegran G; Saltin B
    Am J Physiol; 1998 Jan; 274(1):H314-22. PubMed ID: 9458882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aging is associated with altered vasodilator kinetics in dynamically contracting muscle: role of nitric oxide.
    Casey DP; Ranadive SM; Joyner MJ
    J Appl Physiol (1985); 2015 Aug; 119(3):232-41. PubMed ID: 26023230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.