These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 16427645)

  • 41. Smooth surface meshing for automated finite element model generation from 3D image data.
    Boyd SK; Müller R
    J Biomech; 2006; 39(7):1287-95. PubMed ID: 15922348
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Development of a fully automatic shape model matching (FASMM) system to derive statistical shape models from radiographs: application to the accurate capture and global representation of proximal femur shape.
    Lindner C; Thiagarajah S; Wilkinson JM; ; Wallis GA; Cootes TF
    Osteoarthritis Cartilage; 2013 Oct; 21(10):1537-44. PubMed ID: 23954703
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Tetrahedral versus hexahedral finite elements in numerical modelling of the proximal femur.
    Ramos A; Simões JA
    Med Eng Phys; 2006 Nov; 28(9):916-24. PubMed ID: 16464628
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Voxel-based approach to generate entire human metacarpal bone with microscopic architecture for finite element analysis.
    Tang CY; Tsui CP; Tang YM; Wei L; Wong CT; Lam KW; Ip WY; Lu WW; Pang MY
    Biomed Mater Eng; 2014; 24(2):1469-84. PubMed ID: 24642974
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [A new method to reconstruct the spatial structure of human proximal femur and establishment of the finite element model].
    Ma X; Fu X; Ma J; Zhao Y; Wang T; Wang Z; Zhang Y; Dong B; Yang Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Feb; 28(1):71-5. PubMed ID: 21485187
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Simulation of hip fracture in sideways fall using a 3D finite element model of pelvis-femur-soft tissue complex with simplified representation of whole body.
    Majumder S; Roychowdhury A; Pal S
    Med Eng Phys; 2007 Dec; 29(10):1167-78. PubMed ID: 17270483
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An accurate, fast and robust method to generate patient-specific cubic Hermite meshes.
    Lamata P; Niederer S; Nordsletten D; Barber DC; Roy I; Hose DR; Smith N
    Med Image Anal; 2011 Dec; 15(6):801-13. PubMed ID: 21788150
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A femoral model with all relevant muscles and hip capsule ligaments.
    Helwig P; Hindenlang U; Hirschmüller A; Konstantinidis L; Südkamp N; Schneider R
    Comput Methods Biomech Biomed Engin; 2013; 16(6):669-77. PubMed ID: 22149414
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Exploring inter-subject anatomic variability using a population of patient-specific femurs and a statistical shape and intensity model.
    Bah MT; Shi J; Browne M; Suchier Y; Lefebvre F; Young P; King L; Dunlop DG; Heller MO
    Med Eng Phys; 2015 Oct; 37(10):995-1007. PubMed ID: 26363532
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Prediction of the mechanical response of the femur with uncertain elastic properties.
    Wille H; Rank E; Yosibash Z
    J Biomech; 2012 Apr; 45(7):1140-8. PubMed ID: 22417868
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Development and validation of a semi-automatic landmark extraction method for mesh morphing.
    Wu J; Cai M; Li J; Cao L; Xu L; Li N; Hu J
    Med Eng Phys; 2019 Aug; 70():62-71. PubMed ID: 31229385
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Analysis of pelvic strain in different gait configurations in a validated cohort of computed tomography based finite element models.
    Salo Z; Beek M; Wright D; Maloul A; Whyne CM
    J Biomech; 2017 Nov; 64():120-130. PubMed ID: 29031524
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Finite element analysis of a femur to deconstruct the paradox of bone curvature.
    Jade S; Tamvada KH; Strait DS; Grosse IR
    J Theor Biol; 2014 Jan; 341():53-63. PubMed ID: 24099719
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Prediction of strength and strain of the proximal femur by a CT-based finite element method.
    Bessho M; Ohnishi I; Matsuyama J; Matsumoto T; Imai K; Nakamura K
    J Biomech; 2007; 40(8):1745-53. PubMed ID: 17034798
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Development and validation of subject-specific finite element models for blunt trauma study.
    Shen W; Niu Y; Mattrey RF; Fournier A; Corbeil J; Kono Y; Stuhmiller JH
    J Biomech Eng; 2008 Apr; 130(2):021022. PubMed ID: 18412509
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A three-dimensional finite element model from computed tomography data: a semi-automated method.
    Cattaneo PM; Dalstra M; Frich LH
    Proc Inst Mech Eng H; 2001; 215(2):203-13. PubMed ID: 11382079
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Finite element (FE) modeling of the mandible: from geometric model to tetrahedral volumetric mesh.
    Zhao L; Han H; Patel PK; Widera GE; Harris GF
    Stud Health Technol Inform; 2002; 85():593-6. PubMed ID: 15458158
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A new cortical thickness mapping method with application to an in vivo finite element model.
    Kim YH; Kim JE; Eberhardt AW
    Comput Methods Biomech Biomed Engin; 2014; 17(9):997-1001. PubMed ID: 23113651
    [TBL] [Abstract][Full Text] [Related]  

  • 59. 3-D femoral stress analysis using CT scans and p-version FEM.
    Basu PK; Beall AG; Simmons DJ; Vannier M
    Biomater Med Devices Artif Organs; 1985-1986; 13(3-4):163-86. PubMed ID: 3841817
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Statistical finite element model for bone shape and biomechanical properties.
    Belenguer Querol L; Büchler P; Rueckert D; Nolte LP; González Ballester MA
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 1):405-11. PubMed ID: 17354916
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.