BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 16427835)

  • 21. Putting life on hold-for how long? Profound hypothermic cardiopulmonary bypass in a Swine model of complex vascular injuries.
    Alam HB; Duggan M; Li Y; Spaniolas K; Liu B; Tabbara M; Demoya M; Sailhamer EA; Shults C; Velmahos GC
    J Trauma; 2008 Apr; 64(4):912-22. PubMed ID: 18404056
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tissue oxygen tension during regional low-flow perfusion in neonates.
    DeCampli WM; Schears G; Myung R; Schultz S; Creed J; Pastuszko A; Wilson DF
    J Thorac Cardiovasc Surg; 2003 Mar; 125(3):472-80. PubMed ID: 12658188
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cerebral activation of mitogen-activated protein kinases after circulatory arrest and low flow cardiopulmonary bypass.
    Aharon AS; Mulloy MR; Drinkwater DC; Lao OB; Johnson MD; Thunder M; Yu C; Chang P
    Eur J Cardiothorac Surg; 2004 Nov; 26(5):912-9. PubMed ID: 15519182
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prevention of TNFalpha-associated myocardial dysfunction resulting from cardiopulmonary bypass and cardioplegic arrest by glucocorticoid treatment.
    Liakopoulos OJ; Teucher N; Mühlfeld C; Middel P; Heusch G; Schoendube FA; Dörge H
    Eur J Cardiothorac Surg; 2006 Aug; 30(2):263-70. PubMed ID: 16829094
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ischemic preconditioning reduces deep hypothermic circulatory arrest cardiopulmonary bypass induced lung injury.
    Dong LY; Zheng JH; Qiu XX; Yu M; Ye YZ; Shi S; Yang DC; Xie YW
    Eur Rev Med Pharmacol Sci; 2013 Jul; 17(13):1789-99. PubMed ID: 23852906
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pulsatile pulmonary perfusion during cardiopulmonary bypass reduces the pulmonary inflammatory response.
    Siepe M; Goebel U; Mecklenburg A; Doenst T; Benk C; Stein P; Beyersdorf F; Loop T; Schlensak C
    Ann Thorac Surg; 2008 Jul; 86(1):115-22. PubMed ID: 18573409
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Complement factor 1 inhibitor improves cardiopulmonary function in neonatal cardiopulmonary bypass.
    Baig K; Nassar R; Craig DM; Quick G; Jiang HX; Frank MM; Lodge AJ; Anderson PA; Jaggers J
    Ann Thorac Surg; 2007 Apr; 83(4):1477-82; discussion 1483. PubMed ID: 17383361
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hawley H. Seiler Resident Award paper. The use of a miniaturized circuit and bloodless prime to avoid cerebral no-reflow after neonatal cardiopulmonary bypass.
    Hickey E; Karamlou T; You X; Komanapalli C; Person T; Wehrley K; Ungerleider R
    Ann Thorac Surg; 2007 Mar; 83(3):895-901. PubMed ID: 17307429
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hemodilution elevates cerebral blood flow and oxygen metabolism during cardiopulmonary bypass in piglets.
    Sakamoto T; Nollert GD; Zurakowski D; Soul J; Duebener LF; Sperling J; Nagashima M; Taylor G; DuPlessis AJ; Jonas RA
    Ann Thorac Surg; 2004 May; 77(5):1656-63; discussion 1663. PubMed ID: 15111160
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reduced pulmonary inflammatory response during cardiopulmonary bypass: effects of combined pulmonary perfusion and carbon monoxide inhalation.
    Goebel U; Siepe M; Mecklenburg A; Doenst T; Beyersdorf F; Loop T; Schlensak C
    Eur J Cardiothorac Surg; 2008 Dec; 34(6):1165-72. PubMed ID: 18829339
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Low postoperative hematocrit increases cerebrovascular damage after hypothermic circulatory arrest.
    Shum-Tim D; MacDonald D; Takayuki S; Laliberté E; Chen J; Jamal AM; Philip A; Platt R
    Pediatr Crit Care Med; 2005 May; 6(3):319-26. PubMed ID: 15857532
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The impact of deep and moderate body temperatures on end-organ function during hypothermic circulatory arrest.
    Khaladj N; Peterss S; Pichlmaier M; Shrestha M; von Wasielewski R; Hoy L; Haverich A; Hagl C
    Eur J Cardiothorac Surg; 2011 Dec; 40(6):1492-9; discussion 1499. PubMed ID: 21531569
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Myocardial contractility and relaxation after deep hypothermic circulatory arrest in a neonatal piglet model.
    Tirilomis T; Popov AF; Liakopoulos OJ; Schmitto JD; Bensch M; Steinke K; Coskun KO; Schoendube FA
    Artif Organs; 2012 Jan; 36(1):101-5. PubMed ID: 21790676
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of moderate versus deep hypothermic circulatory arrest and selective cerebral perfusion on cerebrospinal fluid proteomic profiles in a piglet model of cardiopulmonary bypass.
    Allibhai T; DiGeronimo R; Whitin J; Salazar J; Yu TT; Ling XB; Cohen H; Dixon P; Madan A
    J Thorac Cardiovasc Surg; 2009 Dec; 138(6):1290-6. PubMed ID: 19660276
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Beta-adrenergic regulation of the cerebral microcirculation after hypothermic cardiopulmonary bypass.
    Sellke FW; Tofukuji M; Stamler A; Li J; Wang SY
    Circulation; 1997 Nov; 96(9 Suppl):II-304-10. PubMed ID: 9386115
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of poly(ADP-ribose) polymerase activation in the pathogenesis of cardiopulmonary dysfunction in a canine model of cardiopulmonary bypass.
    Szabó G; Soós P; Bährle S; Zsengellér Z; Flechtenmacher C; Hagl S; Szabó C
    Eur J Cardiothorac Surg; 2004 May; 25(5):825-32. PubMed ID: 15082289
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cerebral metabolism during deep hypothermic circulatory arrest vs moderate hypothermic selective cerebral perfusion in a piglet model: a microdialysis study.
    Cavus E; Hoffmann G; Bein B; Scheewe J; Meybohm P; Renner J; Scholz J; Boening A
    Paediatr Anaesth; 2009 Aug; 19(8):770-8. PubMed ID: 19624364
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hypertonic-hyperoncotic solutions improve cardiac function in children after open-heart surgery.
    Schroth M; Plank C; Meissner U; Eberle KP; Weyand M; Cesnjevar R; Dötsch J; Rascher W
    Pediatrics; 2006 Jul; 118(1):e76-84. PubMed ID: 16751617
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pulmonary vasoconstriction due to impaired nitric oxide production after cardiopulmonary bypass.
    Morita K; Ihnken K; Buckberg GD; Sherman MP; Ignarro LJ
    Ann Thorac Surg; 1996 Jun; 61(6):1775-80. PubMed ID: 8651783
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Parameters of pulmonary injury after total or partial cardiopulmonary bypass.
    Friedman M; Sellke FW; Wang SY; Weintraub RM; Johnson RG
    Circulation; 1994 Nov; 90(5 Pt 2):II262-8. PubMed ID: 7955263
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.