These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 1642794)

  • 1. Removal of Cu and Ni by free and immobilized microalgae.
    Wong MH; Pak DC
    Biomed Environ Sci; 1992 Jun; 5(2):99-108. PubMed ID: 1642794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microalgae as bioabsorbents for treating mixture of electroplating and sewage effluent.
    Chan SS; Chow H; Wong MH
    Biomed Environ Sci; 1991 Sep; 4(3):250-61. PubMed ID: 1764214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Testing of two different strains of green microalgae for Cu and Ni removal from aqueous media.
    Rugnini L; Costa G; Congestri R; Bruno L
    Sci Total Environ; 2017 Dec; 601-602():959-967. PubMed ID: 28582741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of pH on the uptake and toxicity of copper and zinc in a tropical freshwater alga (Chlorella sp.).
    Wilde KL; Stauber JL; Markich SJ; Franklin NM; Brown PL
    Arch Environ Contam Toxicol; 2006 Aug; 51(2):174-85. PubMed ID: 16583260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth response of the duckweed Lemna gibba L. to copper and nickel phytoaccumulation.
    Khellaf N; Zerdaoui M
    Ecotoxicology; 2010 Nov; 19(8):1363-8. PubMed ID: 20680456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toxicity and bioaccumulation of copper in three green microalgal species.
    Yan H; Pan G
    Chemosphere; 2002 Nov; 49(5):471-6. PubMed ID: 12363319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of different microalgal species in removing nickel and zinc from industrial wastewater.
    Chong AM; Wong YS; Tam NF
    Chemosphere; 2000 Jul; 41(1-2):251-7. PubMed ID: 10819208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of alginate-immobilized microalgae beads as biosorbent for removal of total ammonia and phosphorus from water of African cichlid (Labidochromis lividus) recirculating aquaculture system.
    Sarkheil M; Ameri M; Safari O
    Environ Sci Pollut Res Int; 2022 Feb; 29(8):11432-11444. PubMed ID: 34536223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of bimetallic combinations of Cu, Ni and Fe on growth rate, uptake of nitrate and ammonium, 14CO2 fixation, nitrate reductase and urease activity of Chlorella vulgaris.
    Mallick N; Singh AK; Rai LC
    Biol Met; 1990; 2(4):223-8. PubMed ID: 2167714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosorption of zinc and copper from aqueous solutions by two freshwater green microalgae Chlorella pyrenoidosa and Scenedesmus obliquus.
    Zhou GJ; Peng FQ; Zhang LJ; Ying GG
    Environ Sci Pollut Res Int; 2011 Aug; 19(7):2918-29. PubMed ID: 22327643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repeated use of two Chlorella species, C. vulgaris and WW1 for cyclic nickel biosorption.
    Tam NF; Wong JP; Wong YS
    Environ Pollut; 2001; 114(1):85-92. PubMed ID: 11444009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic and scanning electron microscopy studies of bioaccumulation of pollutants by algae.
    Doshi H; Ray A; Kothari IL; Gami B
    Curr Microbiol; 2006 Aug; 53(2):148-57. PubMed ID: 16802205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in the metabolism of the microalga Chlorella vulgaris when coimmobilized in alginate with the nitrogen-fixing Phyllobacterium myrsinacearum.
    Gonzalez-Bashan LE; Lebsky VK; Hernandez JP; Bustillos JJ; Bashan Y
    Can J Microbiol; 2000 Jul; 46(7):653-9. PubMed ID: 10932359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Response of
    Al-Hasawi ZM; Abdel-Hamid MI; Almutairi AW; Touliabah HE
    Molecules; 2020 Jun; 25(12):. PubMed ID: 32575616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Cu and Ni on growth, mineral uptake, photosynthesis and enzyme activities of Chlorella vulgaris at different pH values.
    Rai PK; Mallick N; Rai LC
    Biomed Environ Sci; 1994 Mar; 7(1):56-67. PubMed ID: 8024720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly efficient removal of Cu(II), Zn(II), Ni(II) and Fe(II) from electroplating wastewater using sulphide from sulphidogenic bioreactor effluent.
    Fang D; Zhang R; Deng W; Li J
    Environ Technol; 2012; 33(13-15):1709-15. PubMed ID: 22988632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metallomics and NMR-based metabolomics of Chlorella sp. reveal the synergistic role of copper and cadmium in multi-metal toxicity and oxidative stress.
    Zhang W; Tan NG; Fu B; Li SF
    Metallomics; 2015 Mar; 7(3):426-38. PubMed ID: 25569820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immobilization of Chlorella sorokiniana GXNN 01 in alginate for removal of N and P from synthetic wastewater.
    Liu K; Li J; Qiao H; Lin A; Wang G
    Bioresour Technol; 2012 Jun; 114():26-32. PubMed ID: 22520225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Toxic effects of Cu, Zn and Mn on the inhibition of Chlorella pyrenoidosa's growth].
    Yan H; Wang X; Lin Y; Wen G
    Huan Jing Ke Xue; 2001 Jan; 22(1):23-6. PubMed ID: 11382036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal and biodegradation of nonylphenol by immobilized Chlorella vulgaris.
    Gao QT; Wong YS; Tam NF
    Bioresour Technol; 2011 Nov; 102(22):10230-8. PubMed ID: 21944284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.