These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 1642820)

  • 1. Insights into amputee running. A muscle work analysis.
    Czerniecki JM; Gitter A
    Am J Phys Med Rehabil; 1992 Aug; 71(4):209-18. PubMed ID: 1642820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Joint moment and muscle power output characteristics of below knee amputees during running: the influence of energy storing prosthetic feet.
    Czerniecki JM; Gitter A; Munro C
    J Biomech; 1991; 24(1):63-75. PubMed ID: 2026634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy transfer mechanisms as a compensatory strategy in below knee amputee runners.
    Czerniecki JM; Gitter AJ; Beck JC
    J Biomech; 1996 Jun; 29(6):717-22. PubMed ID: 9147968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of prosthetic mass on swing phase work during above-knee amputee ambulation.
    Gitter A; Czerniecki J; Meinders M
    Am J Phys Med Rehabil; 1997; 76(2):114-21. PubMed ID: 9129517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amputee Locomotion: Joint Moment Adaptations to Running Speed Using Running-Specific Prostheses after Unilateral Transtibial Amputation.
    Baum BS; Hobara H; Koh K; Kwon HJ; Miller RH; Shim JK
    Am J Phys Med Rehabil; 2019 Mar; 98(3):182-190. PubMed ID: 29406403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical work adaptations of above-knee amputee ambulation.
    Seroussi RE; Gitter A; Czerniecki JM; Weaver K
    Arch Phys Med Rehabil; 1996 Nov; 77(11):1209-14. PubMed ID: 8931539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of below-knee child amputee gait: SACH foot versus Flex foot.
    Schneider K; Hart T; Zernicke RF; Setoguchi Y; Oppenheim W
    J Biomech; 1993 Oct; 26(10):1191-204. PubMed ID: 8253824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of mechanical and metabolic factors in the gait of congenital below knee amputees. A comparison of the SACH and Seattle feet.
    Colborne GR; Naumann S; Longmuir PE; Berbrayer D
    Am J Phys Med Rehabil; 1992 Oct; 71(5):272-8. PubMed ID: 1388973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical analysis of the influence of prosthetic feet on below-knee amputee walking.
    Gitter A; Czerniecki JM; DeGroot DM
    Am J Phys Med Rehabil; 1991 Jun; 70(3):142-8. PubMed ID: 2039616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic differences between level walking and ramp descent in individuals with unilateral transfemoral amputation using a prosthetic knee without a stance control mechanism.
    Okita Y; Yamasaki N; Nakamura T; Kubo T; Mitsumoto A; Akune T
    Gait Posture; 2018 Jun; 63():80-85. PubMed ID: 29723652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of energy storage and return foot stiffness on walking mechanics and muscle activity in below-knee amputees.
    Fey NP; Klute GK; Neptune RR
    Clin Biomech (Bristol); 2011 Dec; 26(10):1025-32. PubMed ID: 21777999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intra-individual biomechanical effects of a non-microprocessor-controlled stance-yielding prosthetic knee during ramp descent in persons with unilateral transfemoral amputation.
    Okita Y; Yamasaki N; Nakamura T; Mita T; Kubo T; Mitsumoto A; Akune T
    Prosthet Orthot Int; 2019 Feb; 43(1):55-61. PubMed ID: 30051754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of prosthetic foot stiffness to reduce metabolic cost and intact knee loading during below-knee amputee walking: a theoretical study.
    Fey NP; Klute GK; Neptune RR
    J Biomech Eng; 2012 Nov; 134(11):111005. PubMed ID: 23387787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of prosthetic ankle units on the gait of persons with bilateral trans-femoral amputations.
    McNealy LL; Gard SA
    Prosthet Orthot Int; 2008 Mar; 32(1):111-26. PubMed ID: 18330810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical responses of young adults with unilateral transfemoral amputation using two types of mechanical stance control prosthetic knee joints.
    Andrysek J; García D; Rozbaczylo C; Alvarez-Mitchell C; Valdebenito R; Rotter K; Wright FV
    Prosthet Orthot Int; 2020 Oct; 44(5):314-322. PubMed ID: 32389076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cross-Slope and Level Walking Strategies During Swing in Individuals With Lower Limb Amputation.
    Villa C; Loiret I; Langlois K; Bonnet X; Lavaste F; Fodé P; Pillet H
    Arch Phys Med Rehabil; 2017 Jun; 98(6):1149-1157. PubMed ID: 27832952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical comparison of the energy-storing capabilities of SACH and Carbon Copy II prosthetic feet during the stance phase of gait in a person with below-knee amputation.
    Barr AE; Siegel KL; Danoff JV; McGarvey CL; Tomasko A; Sable I; Stanhope SJ
    Phys Ther; 1992 May; 72(5):344-54. PubMed ID: 1631203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How Humans Run Faster: The Neuromechanical Contributions of Functional Muscle Groups to Running at Different Speeds.
    Willer J; Allen SJ; Burden RJ; Folland JP
    Scand J Med Sci Sports; 2024 Aug; 34(8):e14690. PubMed ID: 39049546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscle power compensatory mechanisms in below-knee amputee gait.
    Sadeghi H; Allard P; Duhaime PM
    Am J Phys Med Rehabil; 2001 Jan; 80(1):25-32. PubMed ID: 11138951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.