BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 16428303)

  • 61. A structural basis for substrate selectivity and stereoselectivity in octopine dehydrogenase from Pecten maximus.
    Smits SH; Mueller A; Schmitt L; Grieshaber MK
    J Mol Biol; 2008 Aug; 381(1):200-11. PubMed ID: 18599075
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Role of NAD binding and catalytic residues in the C-terminal binding protein corepressor.
    Mani-Telang P; Sutrias-Grau M; Williams G; Arnosti DN
    FEBS Lett; 2007 Nov; 581(27):5241-6. PubMed ID: 17964573
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Indigogenic substrates for detection and localization of enzymes.
    Kiernan JA
    Biotech Histochem; 2007 Apr; 82(2):73-103. PubMed ID: 17577701
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Involvement of Lys-308 in the FAD-dependent oxidase activity of NADH dehydrogenase from an alkaliphilic Bacillus.
    Kitazume Y; Mutoh M; Shiraki M; Koyama N
    Res Microbiol; 2006 Dec; 157(10):956-9. PubMed ID: 17097855
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Emergence of novel enzyme quasi-species depends on the substrate matrix.
    Kurtovic S; Shokeer A; Mannervik B
    J Mol Biol; 2008 Sep; 382(1):136-53. PubMed ID: 18640124
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Putative reaction mechanism of heterologously expressed octopine dehydrogenase from the great scallop, Pecten maximus (L).
    Müller A; Janssen F; Grieshaber MK
    FEBS J; 2007 Dec; 274(24):6329-39. PubMed ID: 18028427
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Probing the essential catalytic residues and substrate affinity in the thermoactive Bacillus stearothermophilus US100 L-arabinose isomerase by site-directed mutagenesis.
    Rhimi M; Juy M; Aghajari N; Haser R; Bejar S
    J Bacteriol; 2007 May; 189(9):3556-63. PubMed ID: 17337581
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Interaction of acetylcholinesterase with the G4 domain of the laminin alpha1-chain.
    Johnson G; Swart C; Moore SW
    Biochem J; 2008 May; 411(3):507-14. PubMed ID: 18215127
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Concurrent obtaining of aromatic (R)-2-hydroxyacids and aromatic 2-ketoacids by asymmetric oxidation with a newly isolated Pseudomonas aeruginosa ZJB1125.
    Xue YP; Tian FF; Ruan LT; Liu ZQ; Zheng YG; Shen YC
    J Biotechnol; 2013 Sep; 167(3):271-8. PubMed ID: 23831556
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Probing the promiscuous active site of myo-inositol dehydrogenase using synthetic substrates, homology modeling, and active site modification.
    Daniellou R; Zheng H; Langill DM; Sanders DA; Palmer DR
    Biochemistry; 2007 Jun; 46(25):7469-77. PubMed ID: 17539607
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Design, synthesis, and evaluation of gamma-phosphono diester analogues of glutamate as highly potent inhibitors and active site probes of gamma-glutamyl transpeptidase.
    Han L; Hiratake J; Kamiyama A; Sakata K
    Biochemistry; 2007 Feb; 46(5):1432-47. PubMed ID: 17260973
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Neisseria gonorrheae O-acetylpeptidoglycan esterase, a serine esterase with a Ser-His-Asp catalytic triad.
    Weadge JT; Clarke AJ
    Biochemistry; 2007 Apr; 46(16):4932-41. PubMed ID: 17388571
    [TBL] [Abstract][Full Text] [Related]  

  • 73. At5g50600 encodes a member of the short-chain dehydrogenase reductase superfamily with 11beta- and 17beta-hydroxysteroid dehydrogenase activities associated with Arabidopsis thaliana seed oil bodies.
    d'Andréa S; Canonge M; Beopoulos A; Jolivet P; Hartmann MA; Miquel M; Lepiniec L; Chardot T
    Biochimie; 2007 Feb; 89(2):222-9. PubMed ID: 17074428
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Absence of evidence for metabolite-modulated association between alpha-glycerol-3-phosphate dehydrogenase and L-lactate dehydrogenase.
    Lehoux EA; Baker SM; Kovina MV; Hays FA; Spivey HO
    Biochemistry; 2003 May; 42(20):6259-63. PubMed ID: 12755630
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Differences in the chemical reactivity of individual molecules of an enzyme.
    Xue Q; Yeung ES
    Nature; 1995 Feb; 373(6516):681-3. PubMed ID: 7854448
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Enzyme diversity in halophilic archaea.
    Oren A
    Microbiologia; 1994 Sep; 10(3):217-28. PubMed ID: 7873098
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Enzymatic preparation of D-phenyllactic acid at high space-time yield with a novel phenylpyruvate reductase identified from Lactobacillus sp. CGMCC 9967.
    Xu GC; Zhang LL; Ni Y
    J Biotechnol; 2016 Mar; 222():29-37. PubMed ID: 26712480
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Dependence of enzyme reaction mechanism on protonation state of titratable residues and QM level description: lactate dehydrogenase.
    Ferrer S; Silla E; Tuñón I; Oliva M; Moliner V; Williams IH
    Chem Commun (Camb); 2005 Dec; (47):5873-5. PubMed ID: 16317459
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Temperature optima of enzyme-catalysed reactions in microemulsion systems.
    Mlejnek K; Seiffert B; Demberg T; Kämper M; Hoppert M
    Appl Microbiol Biotechnol; 2004 May; 64(4):473-80. PubMed ID: 14634797
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Affinity chromatography of bacterial D-lactate dehydrogenases.
    O'Reilly S; O'Donnell M; O'Carra P
    Biochem Soc Trans; 1998 Feb; 26(1):S71. PubMed ID: 10909829
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.