These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
335 related articles for article (PubMed ID: 16428773)
1. Unique transcriptome signature of Mycobacterium tuberculosis in pulmonary tuberculosis. Rachman H; Strong M; Ulrichs T; Grode L; Schuchhardt J; Mollenkopf H; Kosmiadi GA; Eisenberg D; Kaufmann SH Infect Immun; 2006 Feb; 74(2):1233-42. PubMed ID: 16428773 [TBL] [Abstract][Full Text] [Related]
2. Inference of protein function and protein linkages in Mycobacterium tuberculosis based on prokaryotic genome organization: a combined computational approach. Strong M; Mallick P; Pellegrini M; Thompson MJ; Eisenberg D Genome Biol; 2003; 4(9):R59. PubMed ID: 12952538 [TBL] [Abstract][Full Text] [Related]
3. Mycobacterial bacilli are metabolically active during chronic tuberculosis in murine lungs: insights from genome-wide transcriptional profiling. Talaat AM; Ward SK; Wu CW; Rondon E; Tavano C; Bannantine JP; Lyons R; Johnston SA J Bacteriol; 2007 Jun; 189(11):4265-74. PubMed ID: 17384189 [TBL] [Abstract][Full Text] [Related]
4. Microarray analysis of efflux pump genes in multidrug-resistant Mycobacterium tuberculosis during stress induced by common anti-tuberculous drugs. Gupta AK; Katoch VM; Chauhan DS; Sharma R; Singh M; Venkatesan K; Sharma VD Microb Drug Resist; 2010 Mar; 16(1):21-8. PubMed ID: 20001742 [TBL] [Abstract][Full Text] [Related]
5. Systems-level modeling of mycobacterial metabolism for the identification of new (multi-)drug targets. Rienksma RA; Suarez-Diez M; Spina L; Schaap PJ; Martins dos Santos VA Semin Immunol; 2014 Dec; 26(6):610-22. PubMed ID: 25453232 [TBL] [Abstract][Full Text] [Related]
6. Visualization and interpretation of protein networks in Mycobacterium tuberculosis based on hierarchical clustering of genome-wide functional linkage maps. Strong M; Graeber TG; Beeby M; Pellegrini M; Thompson MJ; Yeates TO; Eisenberg D Nucleic Acids Res; 2003 Dec; 31(24):7099-109. PubMed ID: 14654685 [TBL] [Abstract][Full Text] [Related]
7. Mycobacterium tuberculosis gene expression profiling within the context of protein networks. Rachman H; Strong M; Schaible U; Schuchhardt J; Hagens K; Mollenkopf H; Eisenberg D; Kaufmann SH Microbes Infect; 2006 Mar; 8(3):747-57. PubMed ID: 16513384 [TBL] [Abstract][Full Text] [Related]
8. [Frontier of mycobacterium research--host vs. mycobacterium]. Okada M; Shirakawa T Kekkaku; 2005 Sep; 80(9):613-29. PubMed ID: 16245793 [TBL] [Abstract][Full Text] [Related]
9. The transcriptome of Mycobacterium tuberculosis. Haller R; Kennedy M; Arnold N; Rutherford R Appl Microbiol Biotechnol; 2010 Mar; 86(1):1-9. PubMed ID: 20187299 [TBL] [Abstract][Full Text] [Related]
10. Regulation of the Mycobacterium tuberculosis PE/PPE genes. Voskuil MI; Schnappinger D; Rutherford R; Liu Y; Schoolnik GK Tuberculosis (Edinb); 2004; 84(3-4):256-62. PubMed ID: 15207495 [TBL] [Abstract][Full Text] [Related]
11. [A review of studies on differential transcriptional profile of Mycobacterium tuberculosis in vivo and in vitro]. Zheng XJ; Zhang ZD; Li Q Zhonghua Jie He He Hu Xi Za Zhi; 2013 Aug; 36(8):597-600. PubMed ID: 24252738 [No Abstract] [Full Text] [Related]
12. Expression analysis of efflux pump genes among drug-susceptible and multidrug-resistant Mycobacterium tuberculosis clinical isolates and reference strains. Calgin MK; Sahin F; Turegun B; Gerceker D; Atasever M; Koksal D; Karasartova D; Kiyan M Diagn Microbiol Infect Dis; 2013 Jul; 76(3):291-7. PubMed ID: 23561272 [TBL] [Abstract][Full Text] [Related]
13. Bacterial artificial chromosome fingerprint arrays for the differentiation of transcriptomic differences in mycobacteria. Li AH; Lam WL; Stokes RW J Microbiol Methods; 2008 Dec; 75(3):416-24. PubMed ID: 18706942 [TBL] [Abstract][Full Text] [Related]
15. Global mapping of MtrA-binding sites links MtrA to regulation of its targets in Mycobacterium tuberculosis. Chatterjee A; Sharma AK; Mahatha AC; Banerjee SK; Kumar M; Saha S; Basu J; Kundu M Microbiology (Reading); 2018 Jan; 164(1):99-110. PubMed ID: 29182512 [TBL] [Abstract][Full Text] [Related]
16. Surviving the macrophage: tools and tricks employed by Mycobacterium tuberculosis. Jayachandran R; BoseDasgupta S; Pieters J Curr Top Microbiol Immunol; 2013; 374():189-209. PubMed ID: 23154833 [TBL] [Abstract][Full Text] [Related]
17. Comparison of predicted and observed properties of proteins encoded in the genome of Mycobacterium tuberculosis H37Rv. Urquhart BL; Cordwell SJ; Humphery-Smith I Biochem Biophys Res Commun; 1998 Dec; 253(1):70-9. PubMed ID: 9875222 [TBL] [Abstract][Full Text] [Related]
18. The AraC family transcriptional regulator Rv1931c plays a role in the virulence of Mycobacterium tuberculosis. Frota CC; Papavinasasundaram KG; Davis EO; Colston MJ Infect Immun; 2004 Sep; 72(9):5483-6. PubMed ID: 15322050 [TBL] [Abstract][Full Text] [Related]
19. A genome-wide regulator-DNA interaction network in the human pathogen Mycobacterium tuberculosis H37Rv. Zeng J; Cui T; He ZG J Proteome Res; 2012 Sep; 11(9):4682-92. PubMed ID: 22808930 [TBL] [Abstract][Full Text] [Related]
20. Reduced immunopathology and mortality despite tissue persistence in a Mycobacterium tuberculosis mutant lacking alternative sigma factor, SigH. Kaushal D; Schroeder BG; Tyagi S; Yoshimatsu T; Scott C; Ko C; Carpenter L; Mehrotra J; Manabe YC; Fleischmann RD; Bishai WR Proc Natl Acad Sci U S A; 2002 Jun; 99(12):8330-5. PubMed ID: 12060776 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]