These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 16428833)

  • 1. Water-soluble complexes formed by natural polyphenols and bovine serum albumin: evidence from gel electrophoresis.
    Kusuda M; Hatano T; Yoshida T
    Biosci Biotechnol Biochem; 2006 Jan; 70(1):152-60. PubMed ID: 16428833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Size exclusion chromatographic analysis of polyphenol-serum albumin complexes.
    Hatano T; Hori M; Hemingway RW; Yoshida T
    Phytochemistry; 2003 Aug; 63(7):817-23. PubMed ID: 12877923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of different polyphenols with bovine serum albumin (BSA) and human salivary alpha-amylase (HSA) by fluorescence quenching.
    Soares S; Mateus N; Freitas Vd
    J Agric Food Chem; 2007 Aug; 55(16):6726-35. PubMed ID: 17636939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of polyphenols with proteins: binding of (-)-epigallocatechin gallate to serum albumin, estimated by induced circular dichroism.
    Nozaki A; Hori M; Kimura T; Ito H; Hatano T
    Chem Pharm Bull (Tokyo); 2009 Feb; 57(2):224-8. PubMed ID: 19182419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions of tannic acid and its derivatives (ellagic and gallic acid) with calf thymus DNA and bovine serum albumin using spectroscopic method.
    Labieniec M; Gabryelak T
    J Photochem Photobiol B; 2006 Jan; 82(1):72-8. PubMed ID: 16263304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capillary electrophoresis methods for the determination of covalent polyphenol-protein complexes.
    Trombley JD; Loegel TN; Danielson ND; Hagerman AE
    Anal Bioanal Chem; 2011 Sep; 401(5):1523-9. PubMed ID: 21400190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical modeling of heme-induced lipid oxidation in gastric conditions and inhibition by dietary polyphenols.
    Lorrain B; Dangles O; Genot C; Dufour C
    J Agric Food Chem; 2010 Jan; 58(1):676-83. PubMed ID: 19911829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of water-soluble amino acid Schiff base complexes with bovine serum albumin: fluorescence and circular dichroism studies.
    Gharagozlou M; Boghaei DM
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec; 71(4):1617-22. PubMed ID: 18701343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of flavonoids bearing different substituents on ring C and their cu2+ complex binding with bovine serum albumin: structure-affinity relationship aspects.
    Shi S; Zhang Y; Chen X; Peng M
    J Agric Food Chem; 2011 Oct; 59(19):10761-9. PubMed ID: 21863893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding of (-)-epigallocatechin-3-gallate with thermally-induced bovine serum albumin/ι-carrageenan particles.
    Li J; Wang X
    Food Chem; 2015 Feb; 168():566-71. PubMed ID: 25172749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of the inhibition of bovine liver dihydrofolate reductase by tea catechins: origin of slow-binding inhibition and pH studies.
    Navarro-Perán E; Cabezas-Herrera J; Hiner AN; Sadunishvili T; García-Cánovas F; Rodríguez-López JN
    Biochemistry; 2005 May; 44(20):7512-25. PubMed ID: 15895994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring the binding processes of black tea thearubigin to the bovine serum albumin surface using quartz crystal microbalance with dissipation monitoring.
    Chitpan M; Wang X; Ho CT; Huang Q
    J Agric Food Chem; 2007 Dec; 55(25):10110-6. PubMed ID: 18031008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding interactions of water-soluble camptothecin derivatives with bovine serum albumin.
    Li Q; Zhu Q; Deng X; He W; Zhao T; Zhang B
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Feb; 86():124-30. PubMed ID: 22051412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A versatile water soluble fluorescent probe for ratiometric sensing of Hg2+ and bovine serum albumin.
    Wen J; Geng Z; Yin Y; Wang Z
    Dalton Trans; 2011 Oct; 40(38):9737-45. PubMed ID: 21858313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions of different polyphenols with bovine serum albumin using fluorescence quenching and molecular docking.
    Skrt M; Benedik E; Podlipnik C; Ulrih NP
    Food Chem; 2012 Dec; 135(4):2418-24. PubMed ID: 22980822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on interactions of pentagalloyl glucose, ellagic acid and gallic acid with bovine serum albumin: A spectroscopic analysis.
    Zhang L; Liu Y; Hu X; Xu M; Wang Y
    Food Chem; 2020 Sep; 324():126872. PubMed ID: 32344347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of interactions between polyphenolic compounds and human serum proteins by capillary electrophoresis.
    Diniz A; Escuder-Gilabert L; Lopes NP; Villanueva-Camañas RM; Sagrado S; Medina-Hernández MJ
    Anal Bioanal Chem; 2008 May; 391(2):625-32. PubMed ID: 18418586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methylation of green tea polyphenols affects their binding to and inhibitory poses of the proteasome beta5 subunit.
    Daniel KG; Landis-Piwowar KR; Chen D; Wan SB; Chan TH; Dou QP
    Int J Mol Med; 2006 Oct; 18(4):625-32. PubMed ID: 16964415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of native polyacrylamide gel electrophoresis for protein analysis: Bovine serum albumin as a model protein.
    Li C; Arakawa T
    Int J Biol Macromol; 2019 Mar; 125():566-571. PubMed ID: 30543882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular structure-affinity relationship of natural polyphenols for bovine γ-globulin.
    Xiao J; Kai G; Yang F; Liu C; Xu X; Yamamoto K
    Mol Nutr Food Res; 2011 May; 55 Suppl 1():S86-92. PubMed ID: 21225618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.