BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 16428833)

  • 1. Water-soluble complexes formed by natural polyphenols and bovine serum albumin: evidence from gel electrophoresis.
    Kusuda M; Hatano T; Yoshida T
    Biosci Biotechnol Biochem; 2006 Jan; 70(1):152-60. PubMed ID: 16428833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Size exclusion chromatographic analysis of polyphenol-serum albumin complexes.
    Hatano T; Hori M; Hemingway RW; Yoshida T
    Phytochemistry; 2003 Aug; 63(7):817-23. PubMed ID: 12877923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of different polyphenols with bovine serum albumin (BSA) and human salivary alpha-amylase (HSA) by fluorescence quenching.
    Soares S; Mateus N; Freitas Vd
    J Agric Food Chem; 2007 Aug; 55(16):6726-35. PubMed ID: 17636939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of polyphenols with proteins: binding of (-)-epigallocatechin gallate to serum albumin, estimated by induced circular dichroism.
    Nozaki A; Hori M; Kimura T; Ito H; Hatano T
    Chem Pharm Bull (Tokyo); 2009 Feb; 57(2):224-8. PubMed ID: 19182419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions of tannic acid and its derivatives (ellagic and gallic acid) with calf thymus DNA and bovine serum albumin using spectroscopic method.
    Labieniec M; Gabryelak T
    J Photochem Photobiol B; 2006 Jan; 82(1):72-8. PubMed ID: 16263304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capillary electrophoresis methods for the determination of covalent polyphenol-protein complexes.
    Trombley JD; Loegel TN; Danielson ND; Hagerman AE
    Anal Bioanal Chem; 2011 Sep; 401(5):1523-9. PubMed ID: 21400190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical modeling of heme-induced lipid oxidation in gastric conditions and inhibition by dietary polyphenols.
    Lorrain B; Dangles O; Genot C; Dufour C
    J Agric Food Chem; 2010 Jan; 58(1):676-83. PubMed ID: 19911829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of water-soluble amino acid Schiff base complexes with bovine serum albumin: fluorescence and circular dichroism studies.
    Gharagozlou M; Boghaei DM
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec; 71(4):1617-22. PubMed ID: 18701343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of flavonoids bearing different substituents on ring C and their cu2+ complex binding with bovine serum albumin: structure-affinity relationship aspects.
    Shi S; Zhang Y; Chen X; Peng M
    J Agric Food Chem; 2011 Oct; 59(19):10761-9. PubMed ID: 21863893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding of (-)-epigallocatechin-3-gallate with thermally-induced bovine serum albumin/ι-carrageenan particles.
    Li J; Wang X
    Food Chem; 2015 Feb; 168():566-71. PubMed ID: 25172749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of the inhibition of bovine liver dihydrofolate reductase by tea catechins: origin of slow-binding inhibition and pH studies.
    Navarro-Perán E; Cabezas-Herrera J; Hiner AN; Sadunishvili T; García-Cánovas F; Rodríguez-López JN
    Biochemistry; 2005 May; 44(20):7512-25. PubMed ID: 15895994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring the binding processes of black tea thearubigin to the bovine serum albumin surface using quartz crystal microbalance with dissipation monitoring.
    Chitpan M; Wang X; Ho CT; Huang Q
    J Agric Food Chem; 2007 Dec; 55(25):10110-6. PubMed ID: 18031008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding interactions of water-soluble camptothecin derivatives with bovine serum albumin.
    Li Q; Zhu Q; Deng X; He W; Zhao T; Zhang B
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Feb; 86():124-30. PubMed ID: 22051412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A versatile water soluble fluorescent probe for ratiometric sensing of Hg2+ and bovine serum albumin.
    Wen J; Geng Z; Yin Y; Wang Z
    Dalton Trans; 2011 Oct; 40(38):9737-45. PubMed ID: 21858313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions of different polyphenols with bovine serum albumin using fluorescence quenching and molecular docking.
    Skrt M; Benedik E; Podlipnik C; Ulrih NP
    Food Chem; 2012 Dec; 135(4):2418-24. PubMed ID: 22980822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on interactions of pentagalloyl glucose, ellagic acid and gallic acid with bovine serum albumin: A spectroscopic analysis.
    Zhang L; Liu Y; Hu X; Xu M; Wang Y
    Food Chem; 2020 Sep; 324():126872. PubMed ID: 32344347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of interactions between polyphenolic compounds and human serum proteins by capillary electrophoresis.
    Diniz A; Escuder-Gilabert L; Lopes NP; Villanueva-Camañas RM; Sagrado S; Medina-Hernández MJ
    Anal Bioanal Chem; 2008 May; 391(2):625-32. PubMed ID: 18418586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methylation of green tea polyphenols affects their binding to and inhibitory poses of the proteasome beta5 subunit.
    Daniel KG; Landis-Piwowar KR; Chen D; Wan SB; Chan TH; Dou QP
    Int J Mol Med; 2006 Oct; 18(4):625-32. PubMed ID: 16964415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of native polyacrylamide gel electrophoresis for protein analysis: Bovine serum albumin as a model protein.
    Li C; Arakawa T
    Int J Biol Macromol; 2019 Mar; 125():566-571. PubMed ID: 30543882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular structure-affinity relationship of natural polyphenols for bovine γ-globulin.
    Xiao J; Kai G; Yang F; Liu C; Xu X; Yamamoto K
    Mol Nutr Food Res; 2011 May; 55 Suppl 1():S86-92. PubMed ID: 21225618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.