These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
428 related articles for article (PubMed ID: 16428989)
1. Magnetic resonance imaging of the pancreas at 3.0 tesla: qualitative and quantitative comparison with 1.5 tesla. Edelman RR; Salanitri G; Brand R; Dunkle E; Ragin A; Li W; Mehta U; Berlin J; Newmark G; Gore R; Patel B; Carillo A; Vu A Invest Radiol; 2006 Feb; 41(2):175-80. PubMed ID: 16428989 [TBL] [Abstract][Full Text] [Related]
2. Fast multiplanar spoiled gradient-recalled imaging of the liver: pulse sequence optimization and comparison with spin-echo MR imaging. Low RN; Francis IR; Herfkens RJ; Jeffrey RB; Glazer GM; Foo TK; Shimakawa A; Pelc NJ AJR Am J Roentgenol; 1993 Mar; 160(3):501-9. PubMed ID: 8381572 [TBL] [Abstract][Full Text] [Related]
3. T1-weighted imaging of the brain at 3 tesla using a 2-dimensional spoiled gradient echo technique. Runge VM; Patel MC; Baumann SS; Simonetta AB; Ponzo JA; Lesley WS; Calderwood GW; Naul LG Invest Radiol; 2006 Feb; 41(2):68-75. PubMed ID: 16428975 [TBL] [Abstract][Full Text] [Related]
4. Abdominal magnetic resonance imaging at 3.0 T what is the ultimate gain in signal-to-noise ratio? Schindera ST; Merkle EM; Dale BM; Delong DM; Nelson RC Acad Radiol; 2006 Oct; 13(10):1236-43. PubMed ID: 16979073 [TBL] [Abstract][Full Text] [Related]
5. Comparison of T1-weighted in- and out-of-phase single shot magnetization-prepared gradient-recalled-echo with three-dimensional gradient-recalled-echo at 3.0 Tesla: preliminary observations in abdominal studies. Ferreira A; Ramalho M; de Campos RO; Heredia V; Azevedo RM; Dale B; Semelka RC J Magn Reson Imaging; 2012 May; 35(5):1187-95. PubMed ID: 22128047 [TBL] [Abstract][Full Text] [Related]
6. The value of fast and ultrafast T2-weighted MR imaging sequences in hepatic enhancement with ferumoxides: comparison with conventional spin-echo sequence. Abe Y; Yamashita Y; Namimoto T; Tang Y; Takahashi M Radiat Med; 2000; 18(2):97-105. PubMed ID: 10888042 [TBL] [Abstract][Full Text] [Related]
7. Comparison of Diffusion-Weighted Imaging in the Human Brain Using Readout-Segmented EPI and PROPELLER Turbo Spin Echo With Single-Shot EPI at 7 T MRI. Kida I; Ueguchi T; Matsuoka Y; Zhou K; Stemmer A; Porter D Invest Radiol; 2016 Jul; 51(7):435-9. PubMed ID: 26807895 [TBL] [Abstract][Full Text] [Related]
8. Mangafodipir trisodium (MnDPDP)-enhanced magnetic resonance imaging of the liver and pancreas. Wang C Acta Radiol Suppl; 1998; 415():1-31. PubMed ID: 9571956 [TBL] [Abstract][Full Text] [Related]
9. Assessment of myocardial viability using delayed enhancement magnetic resonance imaging at 3.0 Tesla. Klumpp B; Fenchel M; Hoevelborn T; Helber U; Scheule A; Claussen C; Miller S Invest Radiol; 2006 Sep; 41(9):661-7. PubMed ID: 16896300 [TBL] [Abstract][Full Text] [Related]
10. MR imaging of pancreatic changes in patients with transfusion-dependent beta-thalassemia major. Midiri M; Lo Casto A; Sparacia G; D'Angelo P; Malizia R; Finazzo M; Montalto G; Solbiati L; Lagalla R; De Maria M AJR Am J Roentgenol; 1999 Jul; 173(1):187-92. PubMed ID: 10397124 [TBL] [Abstract][Full Text] [Related]
11. Quantification of pancreatic lipomatosis and liver steatosis by MRI: comparison of in/opposed-phase and spectral-spatial excitation techniques. Schwenzer NF; Machann J; Martirosian P; Stefan N; Schraml C; Fritsche A; Claussen CD; Schick F Invest Radiol; 2008 May; 43(5):330-7. PubMed ID: 18424954 [TBL] [Abstract][Full Text] [Related]
12. Comparison of qualitative and quantitative measurements on unenhanced T1-weighted fat saturation MR images in predicting pancreatic pathology. Gallix BP; Bret PM; Atri M; Lecesne R; Reinhold C J Magn Reson Imaging; 2005 May; 21(5):583-9. PubMed ID: 15834922 [TBL] [Abstract][Full Text] [Related]
13. Conspicuity of tumors of the head and neck on fat-suppressed MR images: T2-weighted fast-spin-echo versus contrast-enhanced T1-weighted conventional spin-echo sequences. Dubin MD; Teresi LM; Bradley WG; Jordan JE; Pema PJ; Goergen SK; Tam JK AJR Am J Roentgenol; 1995 May; 164(5):1213-21. PubMed ID: 7717234 [TBL] [Abstract][Full Text] [Related]
14. High-resolution black-blood MRI of the carotid vessel wall using phased-array coils at 1.5 and 3 Tesla. Anumula S; Song HK; Wright AC; Wehrli FW Acad Radiol; 2005 Dec; 12(12):1521-6. PubMed ID: 16321740 [TBL] [Abstract][Full Text] [Related]
15. Ovarian masses: MR imaging with T1-weighted 3-dimensional gradient-echo IDEAL water-fat separation sequence at 3T. Hori M; Kim T; Onishi H; Nakamoto A; Tsuboyama T; Tatsumi M; Tomiyama N Magn Reson Med Sci; 2012; 11(2):117-27. PubMed ID: 22790298 [TBL] [Abstract][Full Text] [Related]
16. Diffusion-sensitized ophthalmic magnetic resonance imaging free of geometric distortion at 3.0 and 7.0 T: a feasibility study in healthy subjects and patients with intraocular masses. Paul K; Graessl A; Rieger J; Lysiak D; Huelnhagen T; Winter L; Heidemann R; Lindner T; Hadlich S; Zimpfer A; Pohlmann A; Endemann B; Krüger PC; Langner S; Stachs O; Niendorf T Invest Radiol; 2015 May; 50(5):309-21. PubMed ID: 25612144 [TBL] [Abstract][Full Text] [Related]
17. T2-weighted MR imaging of the liver: optimization of hybrid-RARE sequences. Yu BC; Jara H; Vanhoenacker PK; Yucel EK Magn Reson Imaging; 1997; 15(3):267-73. PubMed ID: 9201673 [TBL] [Abstract][Full Text] [Related]
18. MR imaging of head and neck tumors: comparison of T1-weighted contrast-enhanced fat-suppressed images with conventional T2-weighted and fast spin-echo T2-weighted images. Ross MR; Schomer DF; Chappell P; Enzmann DR AJR Am J Roentgenol; 1994 Jul; 163(1):173-8. PubMed ID: 8010208 [TBL] [Abstract][Full Text] [Related]
19. Clinical application of 3D VIBECAIPI-DIXON for non-enhanced imaging of the pancreas compared to a standard 2D fat-saturated FLASH. Haneder S; Koziel K; Morelli JN; Riffel P; Budjan J; Schoenberg SO; Michaely HJ Clin Imaging; 2014; 38(2):142-7. PubMed ID: 24332974 [TBL] [Abstract][Full Text] [Related]
20. Liver: segment-specific analysis of B1 field homogeneity at 3.0-T MR imaging with single-source versus dual-source parallel radiofrequency excitation. Pazahr S; Fischer MA; Chuck N; Luechinger R; Schick F; Nanz D; Boss A Radiology; 2012 Nov; 265(2):591-9. PubMed ID: 22929333 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]