These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 16429161)

  • 1. Induction, suppression and requirement of RNA silencing pathways in virulent Agrobacterium tumefaciens infections.
    Dunoyer P; Himber C; Voinnet O
    Nat Genet; 2006 Feb; 38(2):258-63. PubMed ID: 16429161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Tzs protein and exogenous cytokinin affect virulence gene expression and bacterial growth of Agrobacterium tumefaciens.
    Hwang HH; Yang FJ; Cheng TF; Chen YC; Lee YL; Tsai YL; Lai EM
    Phytopathology; 2013 Sep; 103(9):888-99. PubMed ID: 23593941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Translation start sequences affect the efficiency of silencing of Agrobacterium tumefaciens T-DNA oncogenes.
    Lee H; Humann JL; Pitrak JS; Cuperus JT; Parks TD; Whistler CA; Mok MC; Ream LW
    Plant Physiol; 2003 Nov; 133(3):966-77. PubMed ID: 12972655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of Agrobacterium tumefaciens C58 attachment to Arabidopsis thaliana roots.
    Petrovicheva A; Joyner J; Muth TR
    FEMS Microbiol Lett; 2017 Oct; 364(18):. PubMed ID: 28922840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reexamining the role of the accessory plasmid pAtC58 in the virulence of Agrobacterium tumefaciens strain C58.
    Nair GR; Liu Z; Binns AN
    Plant Physiol; 2003 Nov; 133(3):989-99. PubMed ID: 14551325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overexpression of the HspL Promotes Agrobacterium tumefaciens Virulence in Arabidopsis Under Heat Shock Conditions.
    Hwang HH; Liu YT; Huang SC; Tung CY; Huang FC; Tsai YL; Cheng TF; Lai EM
    Phytopathology; 2015 Feb; 105(2):160-8. PubMed ID: 25163013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptomic Analysis of Arabidopsis Seedlings in Response to an Agrobacterium-Mediated Transformation Process.
    Duan K; Willig CJ; De Tar JR; Spollen WG; Zhang ZJ
    Mol Plant Microbe Interact; 2018 Apr; 31(4):445-459. PubMed ID: 29171790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transient down-regulation of the RNA silencing machinery increases efficiency of Agrobacterium-mediated transformation of Arabidopsis.
    Bilichak A; Yao Y; Kovalchuk I
    Plant Biotechnol J; 2014 Jun; 12(5):590-600. PubMed ID: 24472037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The plant GABA signaling downregulates horizontal transfer of the Agrobacterium tumefaciens virulence plasmid.
    Lang J; Gonzalez-Mula A; Taconnat L; Clement G; Faure D
    New Phytol; 2016 May; 210(3):974-83. PubMed ID: 26714842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the microRNA and small interfering RNA pathways with virus-encoded suppressors of RNA silencing.
    Dunoyer P; Lecellier CH; Parizotto EA; Himber C; Voinnet O
    Plant Cell; 2004 May; 16(5):1235-50. PubMed ID: 15084715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proline antagonizes GABA-induced quenching of quorum-sensing in Agrobacterium tumefaciens.
    Haudecoeur E; Planamente S; Cirou A; Tannières M; Shelp BJ; Moréra S; Faure D
    Proc Natl Acad Sci U S A; 2009 Aug; 106(34):14587-92. PubMed ID: 19706545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of the Arabidopsis histone H2A-1 gene correlates with susceptibility to Agrobacterium transformation.
    Yi H; Mysore KS; Gelvin SB
    Plant J; 2002 Nov; 32(3):285-98. PubMed ID: 12410808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Agrobacterium-produced and exogenous cytokinin-modulated Agrobacterium-mediated plant transformation.
    Hwang HH; Wang MH; Lee YL; Tsai YL; Li YH; Yang FJ; Liao YC; Lin SK; Lai EM
    Mol Plant Pathol; 2010 Sep; 11(5):677-90. PubMed ID: 20696005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inducible Expression of Agrobacterium Virulence Gene VirE2 for Stringent Regulation of T-DNA Transfer in Plant Transient Expression Systems.
    Denkovskienė E; Paškevičius Š; Werner S; Gleba Y; Ražanskienė A
    Mol Plant Microbe Interact; 2015 Nov; 28(11):1247-55. PubMed ID: 26292850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osa protein constitutes a strong oncogenic suppression system that can block vir-dependent transfer of IncQ plasmids between Agrobacterium cells and the establishment of IncQ plasmids in plant cells.
    Lee LY; Gelvin SB
    J Bacteriol; 2004 Nov; 186(21):7254-61. PubMed ID: 15489437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrative and deconvolution omics approaches to uncover the Agrobacterium tumefaciens lifestyle in plant tumors.
    Gonzalez-Mula A; Torres M; Faure D
    Plant Signal Behav; 2019; 14(3):e1581562. PubMed ID: 30774017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silencing of Agrobacterium tumefaciens oncogenes ipt and iaaM induces resistance to crown gall disease in plum but not in apricot.
    Alburquerque N; Faize L; Burgos L
    Pest Manag Sci; 2017 Oct; 73(10):2163-2173. PubMed ID: 28449201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological activity of the tzs gene of nopaline Agrobacterium tumefaciens GV3101 in plant regeneration and genetic transformation.
    Han ZF; Hunter DM; Sibbald S; Zhang JS; Tian L
    Mol Plant Microbe Interact; 2013 Nov; 26(11):1359-65. PubMed ID: 24088018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ACC deaminase activity in avirulent Agrobacterium tumefaciens D3.
    Hao Y; Charles TC; Glick BR
    Can J Microbiol; 2011 Apr; 57(4):278-86. PubMed ID: 21491979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic analysis of nonpathogenic Agrobacterium tumefaciens mutants arising in crown gall tumors.
    Bélanger C; Canfield ML; Moore LW; Dion P
    J Bacteriol; 1995 Jul; 177(13):3752-7. PubMed ID: 7601840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.