BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 16429265)

  • 1. Genome-wide analysis and experimentation of plant serine/ threonine/tyrosine-specific protein kinases.
    Rudrabhatla P; Reddy MM; Rajasekharan R
    Plant Mol Biol; 2006 Jan; 60(2):293-319. PubMed ID: 16429265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases.
    Shiu SH; Bleecker AB
    Proc Natl Acad Sci U S A; 2001 Sep; 98(19):10763-8. PubMed ID: 11526204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel protein kinase of Arabidopsis thaliana (APK1) that phosphorylates tyrosine, serine and threonine.
    Hirayama T; Oka A
    Plant Mol Biol; 1992 Nov; 20(4):653-62. PubMed ID: 1450380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning and biochemical characterization of a plant protein kinase that phosphorylates serine, threonine, and tyrosine.
    Ali N; Halfter U; Chua NH
    J Biol Chem; 1994 Dec; 269(50):31626-9. PubMed ID: 7527390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and functional characterization of the protein kinase Mps1 in Arabidopsis thaliana.
    de Oliveira EA; Romeiro NC; Ribeiro Eda S; Santa-Catarina C; Oliveira AE; Silveira V; de Souza Filho GA; Venancio TM; Cruz MA
    PLoS One; 2012; 7(9):e45707. PubMed ID: 23049844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative proteome bioinformatics: identification of a whole complement of putative protein tyrosine kinases in the model flowering plant Arabidopsis thaliana.
    Carpi A; Di Maira G; Vedovato M; Rossi V; Naccari T; Floriduz M; Terzi M; Filippini F
    Proteomics; 2002 Nov; 2(11):1494-503. PubMed ID: 12442249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional characterization of peanut serine/threonine/tyrosine protein kinase: molecular docking and inhibition kinetics with tyrosine kinase inhibitors.
    Rudrabhatla P; Rajasekharan R
    Biochemistry; 2004 Sep; 43(38):12123-32. PubMed ID: 15379551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of two cDNAs that encode MAP kinase homologues in Arabidopsis thaliana and analysis of the possible role of auxin in activating such kinase activities in cultured cells.
    Mizoguchi T; Gotoh Y; Nishida E; Yamaguchi-Shinozaki K; Hayashida N; Iwasaki T; Kamada H; Shinozaki K
    Plant J; 1994 Jan; 5(1):111-22. PubMed ID: 8130795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutational analysis of stress-responsive peanut dual specificity protein kinase. Identification of tyrosine residues involved in regulation of protein kinase activity.
    Rudrabhatla P; Rajasekharan R
    J Biol Chem; 2003 May; 278(19):17328-35. PubMed ID: 12624102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Serine/threonine/tyrosine protein kinase from Arabidopsis thaliana is dependent on serine residues for its activity.
    Reddy MM; Rajasekharan R
    Arch Biochem Biophys; 2007 Apr; 460(1):122-8. PubMed ID: 17291444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation and substrate specificity of the SR protein kinase Clk/Sty.
    Prasad J; Manley JL
    Mol Cell Biol; 2003 Jun; 23(12):4139-49. PubMed ID: 12773558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmentally regulated dual-specificity kinase from peanut that is induced by abiotic stresses.
    Rudrabhatla P; Rajasekharan R
    Plant Physiol; 2002 Sep; 130(1):380-90. PubMed ID: 12226517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Clk/Sty protein kinase phosphorylates SR splicing factors and regulates their intranuclear distribution.
    Colwill K; Pawson T; Andrews B; Prasad J; Manley JL; Bell JC; Duncan PI
    EMBO J; 1996 Jan; 15(2):265-75. PubMed ID: 8617202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tyrosine phosphorylation of protein kinase complex BAK1/BIK1 mediates Arabidopsis innate immunity.
    Lin W; Li B; Lu D; Chen S; Zhu N; He P; Shan L
    Proc Natl Acad Sci U S A; 2014 Mar; 111(9):3632-7. PubMed ID: 24532660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide identification of MAPK, MAPKK, and MAPKKK gene families and transcriptional profiling analysis during development and stress response in cucumber.
    Wang J; Pan C; Wang Y; Ye L; Wu J; Chen L; Zou T; Lu G
    BMC Genomics; 2015 May; 16(1):386. PubMed ID: 25976104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PKL01, an Ndr kinase homologue in plant, shows tyrosine kinase activity.
    Katayama S; Sugiyama Y; Hatano N; Terachi T; Sueyoshi N; Kameshita I
    J Biochem; 2012 Oct; 152(4):347-53. PubMed ID: 22753892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The cytosolic kinases STY8, STY17, and STY46 are involved in chloroplast differentiation in Arabidopsis.
    Lamberti G; Gügel IL; Meurer J; Soll J; Schwenkert S
    Plant Physiol; 2011 Sep; 157(1):70-85. PubMed ID: 21799034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. STY, a tyrosine-phosphorylating enzyme with sequence homology to serine/threonine kinases.
    Howell BW; Afar DE; Lew J; Douville EM; Icely PL; Gray DA; Bell JC
    Mol Cell Biol; 1991 Jan; 11(1):568-72. PubMed ID: 1986248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. dDYRK2: a novel dual-specificity tyrosine-phosphorylation-regulated kinase in Drosophila.
    Lochhead PA; Sibbet G; Kinstrie R; Cleghon T; Rylatt M; Morrison DK; Cleghon V
    Biochem J; 2003 Sep; 374(Pt 2):381-91. PubMed ID: 12786602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical Analysis of the Role of Leucine-Rich Repeat Receptor-Like Kinases and the Carboxy-Terminus of Receptor Kinases in Regulating Kinase Activity in Arabidopsis thaliana and Brassica oleracea.
    Oh ES; Lee Y; Chae WB; Rameneni JJ; Park YS; Lim YP; Oh MH
    Molecules; 2018 Jan; 23(1):. PubMed ID: 29361797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.