These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 16430136)

  • 1. Packaging of gold particles in viral capsids.
    Chen C; Kwak ES; Stein B; Kao CC; Dragnea B
    J Nanosci Nanotechnol; 2005 Dec; 5(12):2029-33. PubMed ID: 16430136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic effects of mutations and nanoparticle templating in the self-assembly of cowpea chlorotic mottle virus capsids.
    Aniagyei SE; Kennedy CJ; Stein B; Willits DA; Douglas T; Young MJ; De M; Rotello VM; Srisathiyanarayanan D; Kao CC; Dragnea B
    Nano Lett; 2009 Jan; 9(1):393-8. PubMed ID: 19090695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gold nanoparticles as spectroscopic enhancers for in vitro studies on single viruses.
    Dragnea B; Chen C; Kwak ES; Stein B; Kao CC
    J Am Chem Soc; 2003 May; 125(21):6374-5. PubMed ID: 12785770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The disassembly, reassembly and stability of CCMV protein capsids.
    Lavelle L; Michel JP; Gingery M
    J Virol Methods; 2007 Dec; 146(1-2):311-6. PubMed ID: 17804089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Effect of RNA Secondary Structure on the Self-Assembly of Viral Capsids.
    Beren C; Dreesens LL; Liu KN; Knobler CM; Gelbart WM
    Biophys J; 2017 Jul; 113(2):339-347. PubMed ID: 28711172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Simple RNA-DNA Scaffold Templates the Assembly of Monofunctional Virus-Like Particles.
    Garmann RF; Sportsman R; Beren C; Manoharan VN; Knobler CM; Gelbart WM
    J Am Chem Soc; 2015 Jun; 137(24):7584-7. PubMed ID: 26043403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-Assembly of Viral Capsid Proteins Driven by Compressible Nanobubbles.
    Zhang M; Cao S; Liu A; Cornelissen JJLM; Lemay SG
    J Phys Chem Lett; 2020 Dec; 11(24):10421-10424. PubMed ID: 33269936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Encapsulation and crystallization of Prussian blue nanoparticles by cowpea chlorotic mottle virus capsids.
    Wu Y; Yang H; Shin HJ
    Biotechnol Lett; 2014 Mar; 36(3):515-21. PubMed ID: 24190479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled integration of polymers into viral capsids.
    Comellas-Aragonès M; de la Escosura A; Dirks AT; van der Ham A; Fusté-Cuñé A; Cornelissen JJ; Nolte RJ
    Biomacromolecules; 2009 Nov; 10(11):3141-7. PubMed ID: 19839603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Budding pathway in the templated assembly of viruslike particles.
    Malyutin AG; Dragnea B
    J Phys Chem B; 2013 Sep; 117(37):10730-6. PubMed ID: 23947533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defects and Chirality in the Nanoparticle-Directed Assembly of Spherocylindrical Shells of Virus Coat Proteins.
    Zeng C; Rodriguez Lázaro G; Tsvetkova IB; Hagan MF; Dragnea B
    ACS Nano; 2018 Jun; 12(6):5323-5332. PubMed ID: 29694012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Versatile post-functionalization of the external shell of cowpea chlorotic mottle virus by using click chemistry.
    Hommersom CA; Matt B; van der Ham A; Cornelissen JJ; Katsonis N
    Org Biomol Chem; 2014 Jun; 12(24):4065-9. PubMed ID: 24817149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of nonuniform geometry on nanoindentation of viral capsids.
    Gibbons MM; Klug WS
    Biophys J; 2008 Oct; 95(8):3640-9. PubMed ID: 18621831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How a Virus Circumvents Energy Barriers to Form Symmetric Shells.
    Panahandeh S; Li S; Marichal L; Leite Rubim R; Tresset G; Zandi R
    ACS Nano; 2020 Mar; 14(3):3170-3180. PubMed ID: 32115940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced local symmetry interactions globally stabilize a mutant virus capsid that maintains infectivity and capsid dynamics.
    Speir JA; Bothner B; Qu C; Willits DA; Young MJ; Johnson JE
    J Virol; 2006 Apr; 80(7):3582-91. PubMed ID: 16537626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Approximation of virus structure by icosahedral tilings.
    Salthouse DG; Indelicato G; Cermelli P; Keef T; Twarock R
    Acta Crystallogr A Found Adv; 2015 Jul; 71(Pt 4):410-22. PubMed ID: 26131897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal nanoshell assembly on a virus bioscaffold.
    Radloff C; Vaia RA; Brunton J; Bouwer GT; Ward VK
    Nano Lett; 2005 Jun; 5(6):1187-91. PubMed ID: 15943466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coat Protein-Dependent Behavior of Poly(ethylene glycol) Tails in Iron Oxide Core Virus-like Nanoparticles.
    Malyutin AG; Cheng H; Sanchez-Felix OR; Carlson K; Stein BD; Konarev PV; Svergun DI; Dragnea B; Bronstein LM
    ACS Appl Mater Interfaces; 2015 Jun; 7(22):12089-98. PubMed ID: 25989427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoindentation studies of full and empty viral capsids and the effects of capsid protein mutations on elasticity and strength.
    Michel JP; Ivanovska IL; Gibbons MM; Klug WS; Knobler CM; Wuite GJ; Schmidt CF
    Proc Natl Acad Sci U S A; 2006 Apr; 103(16):6184-9. PubMed ID: 16606825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of subunit hinges and molecular "switches" in the control of viral capsid polymorphism.
    Tang J; Johnson JM; Dryden KA; Young MJ; Zlotnick A; Johnson JE
    J Struct Biol; 2006 Apr; 154(1):59-67. PubMed ID: 16495083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.