These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 16430147)

  • 1. Atomistic simulations of J-integral in 2D graphene nanosystems.
    Jin Y; Yuan FG
    J Nanosci Nanotechnol; 2005 Dec; 5(12):2099-107. PubMed ID: 16430147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoscopic modeling of fracture of 2D graphene systems.
    Jin Y; Yuan FG
    J Nanosci Nanotechnol; 2005 Apr; 5(4):601-8. PubMed ID: 16004126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An atomistic J-integral at finite temperature based on Hardy estimates of continuum fields.
    Jones RE; Zimmerman JA; Oswald J; Belytschko T
    J Phys Condens Matter; 2011 Jan; 23(1):015002. PubMed ID: 21406817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The application of an atomistic J-integral to a ductile crack.
    Zimmerman JA; Jones RE
    J Phys Condens Matter; 2013 Apr; 25(15):155402. PubMed ID: 23528925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear fracture toughness measurement and crack propagation resistance of functionalized graphene multilayers.
    Cao C; Mukherjee S; Howe JY; Perovic DD; Sun Y; Singh CV; Filleter T
    Sci Adv; 2018 Apr; 4(4):eaao7202. PubMed ID: 29632889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dislocation Shielding of a Nanocrack in Graphene: Atomistic Simulations and Continuum Modeling.
    Meng F; Chen C; Song J
    J Phys Chem Lett; 2015 Oct; 6(20):4038-42. PubMed ID: 26722773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene mechanics: II. Atomic stress distribution during indentation until rupture.
    Costescu BI; Gräter F
    Phys Chem Chem Phys; 2014 Jun; 16(24):12582-90. PubMed ID: 24834440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical Investigation of the Fracture Properties of Pre-Cracked Monocrystalline/Polycrystalline Graphene Sheets.
    Li X; Guo J
    Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30650573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene Foam: Uniaxial Tension Behavior and Fracture Mode Based on a Mesoscopic Model.
    Pan D; Wang C; Wang TC; Yao Y
    ACS Nano; 2017 Sep; 11(9):8988-8997. PubMed ID: 28825792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asynchronous cracking with dissimilar paths in multilayer graphene.
    Jang B; Kim B; Kim JH; Lee HJ; Sumigawa T; Kitamura T
    Nanoscale; 2017 Nov; 9(44):17325-17333. PubMed ID: 29094137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing the Stress Intensity Factor of Graphene Sheet with Central Crack.
    Tsai JL; Sie MJ
    J Nanosci Nanotechnol; 2015 May; 15(5):3764-72. PubMed ID: 26505003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective elastic mechanical properties of single layer graphene sheets.
    Scarpa F; Adhikari S; Srikantha Phani A
    Nanotechnology; 2009 Feb; 20(6):065709. PubMed ID: 19417403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The bending of single layer graphene sheets: the lattice versus continuum approach.
    Scarpa F; Adhikari S; Gil AJ; Remillat C
    Nanotechnology; 2010 Mar; 21(12):125702. PubMed ID: 20195011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fracture toughness of graphene.
    Zhang P; Ma L; Fan F; Zeng Z; Peng C; Loya PE; Liu Z; Gong Y; Zhang J; Zhang X; Ajayan PM; Zhu T; Lou J
    Nat Commun; 2014 Apr; 5():3782. PubMed ID: 24777167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Critical length scales and strain localization govern the mechanical performance of multi-layer graphene assemblies.
    Xia W; Ruiz L; Pugno NM; Keten S
    Nanoscale; 2016 Mar; 8(12):6456-62. PubMed ID: 26935048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beyond conventional nonlinear fracture mechanics in graphene nanoribbons.
    Shimada T; Huang K; Van Lich L; Ozaki N; Jang B; Kitamura T
    Nanoscale; 2020 Sep; 12(35):18363-18370. PubMed ID: 32870230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Designing molecular structure to achieve ductile fracture behavior in a stiff and strong 2D polymer, "graphylene".
    Sandoz-Rosado E; Beaudet TD; Balu R; Wetzel ED
    Nanoscale; 2016 Jun; 8(21):10947-55. PubMed ID: 26996950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of bioinspired non-interlocking geometrically patterned interfaces under predominant mode I loading.
    Hosseini MS; Cordisco FA; Zavattieri PD
    J Mech Behav Biomed Mater; 2019 Aug; 96():244-260. PubMed ID: 31075746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large stretchability and failure mechanism of graphene kirigami under tension.
    Hua Z; Zhao Y; Dong S; Yu P; Liu Y; Wei N; Zhao J
    Soft Matter; 2017 Dec; 13(47):8930-8939. PubMed ID: 29143828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Empirical potential for molecular simulation of graphene nanoplatelets.
    Bourque AJ; Rutledge GC
    J Chem Phys; 2018 Apr; 148(14):144709. PubMed ID: 29655320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.