These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 16430217)

  • 1. Role of nuclear chromogranin B in inositol 1,4,5-trisphosphate-mediated nuclear Ca2+ mobilization.
    Huh YH; Chu SY; Park SY; Huh SK; Yoo SH
    Biochemistry; 2006 Jan; 45(4):1212-26. PubMed ID: 16430217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of and chromogranin effect on inositol 1,4,5-trisphosphate sensitivity of cytoplasmic and nucleoplasmic inositol 1,4,5-trisphosphate receptor/Ca2+ channels.
    Huh YH; Kim KD; Yoo SH
    Biochemistry; 2007 Dec; 46(49):14032-43. PubMed ID: 17997581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enrichment of the inositol 1,4,5-trisphosphate receptor/Ca2+ channels in secretory granules and essential roles of chromogranins.
    Yoo SH; Hur YS
    Cell Calcium; 2012; 51(3-4):342-50. PubMed ID: 22222090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Secretory granules in inositol 1,4,5-trisphosphate-dependent Ca2+ signaling in the cytoplasm of neuroendocrine cells.
    Yoo SH
    FASEB J; 2010 Mar; 24(3):653-64. PubMed ID: 19837865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of secretory granules in inositol 1,4,5-trisphosphate-dependent Ca(2+) signaling: from phytoplankton to mammals.
    Yoo SH
    Cell Calcium; 2011 Aug; 50(2):175-83. PubMed ID: 21176957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nuclear calcium signaling by inositol trisphosphate in GH3 pituitary cells.
    Chamero P; Manjarres IM; García-Verdugo JM; Villalobos C; Alonso MT; García-Sancho J
    Cell Calcium; 2008 Feb; 43(2):205-14. PubMed ID: 17583789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear Ca2+ regulates cardiomyocyte function.
    Guatimosim S; Amaya MJ; Guerra MT; Aguiar CJ; Goes AM; Gómez-Viquez NL; Rodrigues MA; Gomes DA; Martins-Cruz J; Lederer WJ; Leite MF
    Cell Calcium; 2008 Aug; 44(2):230-42. PubMed ID: 18201761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein kinase C phosphorylates the inositol 1,4,5-trisphosphate receptor type 2 and decreases the mobilization of Ca2+in pancreatoma AR4-2J cells.
    Arguin G; Regimbald-Dumas Y; Fregeau MO; Caron AZ; Guillemette G
    J Endocrinol; 2007 Mar; 192(3):659-68. PubMed ID: 17332533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Presence of secretogranin II and high-capacity, low-affinity Ca2+ storage role in nucleoplasmic Ca2+ store vesicles.
    Yoo SH; Chu SY; Kim KD; Huh YH
    Biochemistry; 2007 Dec; 46(50):14663-71. PubMed ID: 18020452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endothelin-1 enhances nuclear Ca2+ transients in atrial myocytes through Ins(1,4,5)P3-dependent Ca2+ release from perinuclear Ca2+ stores.
    Kockskämper J; Seidlmayer L; Walther S; Hellenkamp K; Maier LS; Pieske B
    J Cell Sci; 2008 Jan; 121(Pt 2):186-95. PubMed ID: 18089647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Abnormalities of sarcoplasmic reticulum Ca2+ mobilization in aortic smooth muscle cells from streptozotocin-induced diabetic rats.
    Ma L; Zhu B; Chen X; Liu J; Guan Y; Ren J
    Clin Exp Pharmacol Physiol; 2008 May; 35(5-6):568-73. PubMed ID: 18067595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polycystin-1 and polycystin-2 are both required to amplify inositol-trisphosphate-induced Ca2+ release.
    Mekahli D; Sammels E; Luyten T; Welkenhuyzen K; van den Heuvel LP; Levtchenko EN; Gijsbers R; Bultynck G; Parys JB; De Smedt H; Missiaen L
    Cell Calcium; 2012 Jun; 51(6):452-8. PubMed ID: 22456092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. cAMP-dependent protein kinase enhances inositol 1,4,5-trisphosphate-induced Ca2+ release in AR4-2J cells.
    Regimbald-Dumas Y; Arguin G; Fregeau MO; Guillemette G
    J Cell Biochem; 2007 Jun; 101(3):609-18. PubMed ID: 17203464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Positive regulation of inositol 1,4,5-trisphosphate-induced Ca2+ release by mammalian target of rapamycin (mTOR) in RINm5F cells.
    Frégeau MO; Régimbald-Dumas Y; Guillemette G
    J Cell Biochem; 2011 Feb; 112(2):723-33. PubMed ID: 21268094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inositol 1,4,5-trisphosphate receptor in chromaffin secretory granules and its relation to chromogranins.
    Yoo SH; Huh YH; Hur YS
    Cell Mol Neurobiol; 2010 Nov; 30(8):1155-61. PubMed ID: 21046461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IP3-induced cytosolic and nuclear Ca2+ signals in HL-1 atrial myocytes: possible role of IP3 receptor subtypes.
    Kim JC; Son MJ; Subedi KP; Kim DH; Woo SH
    Mol Cells; 2010 Apr; 29(4):387-95. PubMed ID: 20213315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of IP3-mediated calcium responses and their role in nuclear signalling in rat basolateral amygdala neurons.
    Power JM; Sah P
    J Physiol; 2007 May; 580(Pt.3):835-57. PubMed ID: 17303640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of chromogranin a and chromogranin B (secretogranin I) synthesis in bovine cultured chromaffin cells.
    Galindo E; Bader MF; Aunis D
    J Neuroendocrinol; 1991 Dec; 3(6):669-77. PubMed ID: 19215537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The suppressor domain of inositol 1,4,5-trisphosphate receptor plays an essential role in the protection against apoptosis.
    Szlufcik K; Bultynck G; Callewaert G; Missiaen L; Parys JB; De Smedt H
    Cell Calcium; 2006 Apr; 39(4):325-36. PubMed ID: 16458354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. C-terminal domain of chromogranin B regulates intracellular calcium signaling.
    Schmidt S; Mo M; Heidrich FM; Ćelić A; Ehrlich BE
    J Biol Chem; 2011 Dec; 286(52):44888-96. PubMed ID: 22016391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.