These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 16430225)

  • 1. Assignment of the vibrational modes of the chromophores of iodopsin and bathoiodopsin: low-temperature fourier transform infrared spectroscopy of 13C- and 2H-labeled iodopsins.
    Hirano T; Fujioka N; Imai H; Kandori H; Wada A; Ito M; Shichida Y
    Biochemistry; 2006 Jan; 45(4):1285-94. PubMed ID: 16430225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromophore configuration of iodopsin and its photoproducts formed at low temperatures.
    Imamoto Y; Yoshizawa T; Shichida Y
    Biochemistry; 1996 Nov; 35(46):14599-607. PubMed ID: 8931558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of anion binding on iodopsin studied by low-temperature fourier transform infrared spectroscopy.
    Imamoto Y; Hirano T; Imai H; Kandori H; Maeda A; Yoshizawa T; Groesbeek M; Lugtenburg J; Shichida Y
    Biochemistry; 1999 Sep; 38(36):11749-54. PubMed ID: 10512631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assignment of the hydrogen-out-of-plane and -in-plane vibrations of the retinal chromophore in the K intermediate of pharaonis phoborhodopsin.
    Furutani Y; Sudo Y; Wada A; Ito M; Shimono K; Kamo N; Kandori H
    Biochemistry; 2006 Oct; 45(39):11836-43. PubMed ID: 17002284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural changes in the Schiff base region of squid rhodopsin upon photoisomerization studied by low-temperature FTIR spectroscopy.
    Ota T; Furutani Y; Terakita A; Shichida Y; Kandori H
    Biochemistry; 2006 Mar; 45(9):2845-51. PubMed ID: 16503639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectroscopic evidence for altered chromophore--protein interactions in low-temperature photoproducts of the visual pigment responsible for congenital night blindness.
    Fahmy K; Zvyaga TA; Sakmar TP; Siebert F
    Biochemistry; 1996 Nov; 35(47):15065-73. PubMed ID: 8942673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal recovery of iodopsin from photobleaching intermediates.
    Imamoto Y; Shichida Y
    Photochem Photobiol; 2008; 84(4):941-8. PubMed ID: 18399920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FTIR studies of the photoactivation processes in squid retinochrome.
    Furutani Y; Terakita A; Shichida Y; Kandori H
    Biochemistry; 2005 Jun; 44(22):7988-97. PubMed ID: 15924417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural changes in bacteriorhodopsin following retinal photoisomerization from the 13-cis form.
    Mizuide N; Shibata M; Friedman N; Sheves M; Belenky M; Herzfeld J; Kandori H
    Biochemistry; 2006 Sep; 45(35):10674-81. PubMed ID: 16939219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chloride effect on iodopsin studied by low-temperature visible and infrared spectroscopies.
    Hirano T; Imai H; Kandori H; Shichida Y
    Biochemistry; 2001 Feb; 40(5):1385-92. PubMed ID: 11170466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FTIR spectroscopy of the all-trans form of Anabaena sensory rhodopsin at 77 K: hydrogen bond of a water between the Schiff base and Asp75.
    Furutani Y; Kawanabe A; Jung KH; Kandori H
    Biochemistry; 2005 Sep; 44(37):12287-96. PubMed ID: 16156642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of anion binding on the thermal reverse reaction of bathoiodopsin: anion stabilizes two forms of iodopsin.
    Hirano T; Imai H; Shichida Y
    Biochemistry; 2003 Nov; 42(43):12700-7. PubMed ID: 14580218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FTIR spectroscopy of the K photointermediate of Neurospora rhodopsin: structural changes of the retinal, protein, and water molecules after photoisomerization.
    Furutani Y; Bezerra AG; Waschuk S; Sumii M; Brown LS; Kandori H
    Biochemistry; 2004 Aug; 43(30):9636-46. PubMed ID: 15274618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of chloride ion on the thermal decay process of the batho intermediate of iodopsin at low temperature.
    Imamoto Y; Kandori H; Okano T; Fukada Y; Shichida Y; Yoshizawa T
    Biochemistry; 1989 Nov; 28(24):9412-6. PubMed ID: 2611241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. What makes red visual pigments red? A resonance Raman microprobe study of retinal chromophore structure in iodopsin.
    Lin SW; Imamoto Y; Fukada Y; Shichida Y; Yoshizawa T; Mathies RA
    Biochemistry; 1994 Mar; 33(8):2151-60. PubMed ID: 8117671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FTIR study of the photoisomerization processes in the 13-cis and all-trans forms of Anabaena sensory rhodopsin at 77 K.
    Kawanabe A; Furutani Y; Jung KH; Kandori H
    Biochemistry; 2006 Apr; 45(14):4362-70. PubMed ID: 16584171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iodopsin, a red-sensitive cone visual pigment in the chicken retina.
    Yoshizawa T; Kuwata O
    Photochem Photobiol; 1991 Dec; 54(6):1061-70. PubMed ID: 1775529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of chloride on the thermal reverse reaction of intermediates of iodopsin.
    Tachibanaki S; Imamoto Y; Imai H; Shichida Y
    Biochemistry; 1995 Oct; 34(40):13170-5. PubMed ID: 7548079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-resolved rapid-scan Fourier transform infrared difference spectroscopy on a noncyclic photosystem: rhodopsin photointermediates from Lumi to Meta II.
    Lüdeke S; Lórenz Fonfría VA; Siebert F; Vogel R
    Biopolymers; 2006 Oct; 83(2):159-69. PubMed ID: 16721790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonance Raman examination of the wavelength regulation mechanism in human visual pigments.
    Kochendoerfer GG; Wang Z; Oprian DD; Mathies RA
    Biochemistry; 1997 Jun; 36(22):6577-87. PubMed ID: 9184137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.