These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 16430304)

  • 1. Analysis of electron transfer processes across liquid/liquid interfaces: estimation of free energy of activation using diffuse boundary model.
    Harinipriya S; Sangaranarayanan MV
    Langmuir; 2006 Jan; 22(3):1347-55. PubMed ID: 16430304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoinduced electron transfer at liquid|liquid interfaces: dynamics of the heterogeneous photoreduction of quinones by self-assembled porphyrin ion pairs.
    Eugster N; Fermín DJ; Girault HH
    J Am Chem Soc; 2003 Apr; 125(16):4862-9. PubMed ID: 12696905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential capacitance of liquid/liquid interfaces--a lattice gas model approach.
    Muthukrishnan A; Sangaranarayanan MV
    J Colloid Interface Sci; 2006 Apr; 296(2):624-33. PubMed ID: 16288771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of the dependence of interfacial charge-transfer rate constants on the reorganization energy of redox species at n-ZnO/H2O interfaces.
    Hamann TW; Gstrein F; Brunschwig BS; Lewis NS
    J Am Chem Soc; 2005 Oct; 127(40):13949-54. PubMed ID: 16201817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simple electrochemical method for deposition and voltammetric inspection of silver particles at the liquid-liquid interface of a thin-film electrode.
    Mirceski V; Gulaboski R
    J Phys Chem B; 2006 Feb; 110(6):2812-20. PubMed ID: 16471890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative study of electron transfer reactions at the ionic liquid/water and organic/water interfaces.
    Laforge FO; Kakiuchi T; Shigematsu F; Mirkin MV
    J Am Chem Soc; 2004 Dec; 126(47):15380-1. PubMed ID: 15563155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of the free-energy dependence of interfacial charge-transfer rate constants using ZnO/H2O semiconductor/liquid contacts.
    Hamann TW; Gstrein F; Brunschwig BS; Lewis NS
    J Am Chem Soc; 2005 Jun; 127(21):7815-24. PubMed ID: 15913371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of lithium ion transfer at the interface between graphite and liquid electrolytes: effects of solvent and surface film.
    Yamada Y; Iriyama Y; Abe T; Ogumi Z
    Langmuir; 2009 Nov; 25(21):12766-70. PubMed ID: 19856995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observation of the marcus inverted region of electron transfer reactions at a liquid/liquid interface.
    Sun P; Li F; Chen Y; Zhang M; Zhang Z; Gao Z; Shao Y
    J Am Chem Soc; 2003 Aug; 125(32):9600-1. PubMed ID: 12904021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free energy and dynamics of electron-transfer reactions in a room temperature ionic liquid.
    Shim Y; Kim HJ
    J Phys Chem B; 2007 May; 111(17):4510-9. PubMed ID: 17425362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Revisiting the hexane-water interface via molecular dynamics simulations using nonadditive alkane-water potentials.
    Patel SA; Brooks CL
    J Chem Phys; 2006 May; 124(20):204706. PubMed ID: 16774363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure, dynamics, and the free energy of solute adsorption at liquid-vapor interfaces of simple dipolar systems: molecular dynamics results for pure and mixed Stockmayer fluids.
    Paul S; Chandra A
    J Phys Chem B; 2007 Nov; 111(43):12500-7. PubMed ID: 17927243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-state model based on electron-transfer reactivity changes to quantify the noncovalent interaction between Co(NH3)5Cl2+ and 18-crown-6 ether: the effect of second-sphere coordination on electron-transfer processes.
    Borreguero M; Prado-Gotor R
    J Phys Chem A; 2008 Apr; 112(13):2813-9. PubMed ID: 18311956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron transfer kinetics at polarized nanoscopic liquid/liquid interfaces.
    Cai C; Mirkin MV
    J Am Chem Soc; 2006 Jan; 128(1):171-9. PubMed ID: 16390144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular mechanism of transporting a polarizable iodide anion across the water-CCl4 liquid/liquid interface.
    Wick C; Dang LX
    J Chem Phys; 2007 Apr; 126(13):134702. PubMed ID: 17430051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative study of the thermodynamics and kinetics of the ion transfer across the liquid/liquid interface by means of three-phase electrodes.
    Quentel F; Mirceski V; L'Her M; Mladenov M; Scholz F; Elleouet C
    J Phys Chem B; 2005 Jul; 109(27):13228-36. PubMed ID: 16852650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical determination of the standard reduction potentials of pheophytin-a in N,N-dimethyl formamide and membrane.
    Mehta N; Datta SN
    J Phys Chem B; 2007 Jun; 111(25):7210-7. PubMed ID: 17536851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polarizable solute in polarizable and flexible solvents: simulation study of electron transfer reaction systems.
    Ishida T
    J Phys Chem B; 2005 Oct; 109(39):18558-64. PubMed ID: 16853390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Which mechanism operates in the electron-transfer process at liquid/liquid interfaces?
    Zhou M; Gan S; Zhong L; Dong X; Niu L
    Phys Chem Chem Phys; 2011 Feb; 13(7):2774-9. PubMed ID: 21152647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.