BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 16430498)

  • 41. A cladistic analysis of the evolutionary relationships of the members of the tyrosinase gene family using sequence data.
    Morrison R; Mason K; Frost-Mason S
    Pigment Cell Res; 1994 Dec; 7(6):388-93. PubMed ID: 7761346
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Exploring fungal biodiversity for the production of water-soluble pigments as potential natural food colorants.
    Mapari SA; Nielsen KF; Larsen TO; Frisvad JC; Meyer AS; Thrane U
    Curr Opin Biotechnol; 2005 Apr; 16(2):231-8. PubMed ID: 15831392
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Heterologous expression and characterization of functional mushroom tyrosinase (AbPPO4).
    Pretzler M; Bijelic A; Rompel A
    Sci Rep; 2017 May; 7(1):1810. PubMed ID: 28500345
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A novel putative tyrosinase involved in periostracum formation from the pearl oyster (Pinctada fucata).
    Zhang C; Xie L; Huang J; Chen L; Zhang R
    Biochem Biophys Res Commun; 2006 Apr; 342(2):632-9. PubMed ID: 16488396
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Tyrosinases from crustaceans form hexamers.
    Jaenicke E; Decker H
    Biochem J; 2003 Apr; 371(Pt 2):515-23. PubMed ID: 12466021
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Recombinant Tyrosinase from Polyporus arcularius: Overproduction in Escherichia coli, Characterization, and Use in a Study of Aurones as Tyrosinase Effectors.
    Marková E; Kotik M; Křenková A; Man P; Haudecoeur R; Boumendjel A; Hardré R; Mekmouche Y; Courvoisier-Dezord E; Réglier M; Martínková L
    J Agric Food Chem; 2016 Apr; 64(14):2925-31. PubMed ID: 26961852
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cloning and molecular characterization of a SDS-activated tyrosinase from Marinomonas mediterranea.
    López-Serrano D; Sanchez-Amat A; Solano F
    Pigment Cell Res; 2002 Apr; 15(2):104-11. PubMed ID: 11936267
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Similar but Still Different: Which Amino Acid Residues Are Responsible for Varying Activities in Type-III Copper Enzymes?
    Kampatsikas I; Rompel A
    Chembiochem; 2021 Apr; 22(7):1161-1175. PubMed ID: 33108057
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tyrosinase versus Catechol Oxidase: One Asparagine Makes the Difference.
    Solem E; Tuczek F; Decker H
    Angew Chem Int Ed Engl; 2016 Feb; 55(8):2884-8. PubMed ID: 26773413
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Type-3 copper proteins: recent advances on polyphenol oxidases.
    Kaintz C; Mauracher SG; Rompel A
    Adv Protein Chem Struct Biol; 2014; 97():1-35. PubMed ID: 25458353
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Production and characterization of a secreted, C-terminally processed tyrosinase from the filamentous fungus Trichoderma reesei.
    Selinheimo E; Saloheimo M; Ahola E; Westerholm-Parvinen A; Kalkkinen N; Buchert J; Kruus K
    FEBS J; 2006 Sep; 273(18):4322-35. PubMed ID: 16939623
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Oxygen as a morphogenic factor in sponges: expression of a tyrosinase gene in the sponge Suberites domuncula.
    Müller WE; Perović S; Schröder HC; Breter HJ
    Micron; 2004; 35(1-2):87-8. PubMed ID: 15036300
    [TBL] [Abstract][Full Text] [Related]  

  • 53. New tyrosinases with putative action against contaminants of emerging concern.
    Xavier Senra MV; Fonseca AL
    Proteins; 2021 Sep; 89(9):1180-1192. PubMed ID: 33969540
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Novel insights in the use of hydrolytic enzymes secreted by fungi with biotechnological potential.
    Pereira JL; Noronha EF; Miller RN; Franco OL
    Lett Appl Microbiol; 2007 Jun; 44(6):573-81. PubMed ID: 17576216
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High level protein-purification allows the unambiguous polypeptide determination of latent isoform PPO4 of mushroom tyrosinase.
    Mauracher SG; Molitor C; Michael C; Kragl M; Rizzi A; Rompel A
    Phytochemistry; 2014 Mar; 99(100):14-25. PubMed ID: 24461779
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Lectins from the Edible Mushroom
    Ismaya WT; Tjandrawinata RR; Rachmawati H
    Molecules; 2020 May; 25(10):. PubMed ID: 32443732
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A perspective on the biotechnological applications of the versatile tyrosinase.
    Min K; Park GW; Yoo YJ; Lee JS
    Bioresour Technol; 2019 Oct; 289():121730. PubMed ID: 31279520
    [TBL] [Abstract][Full Text] [Related]  

  • 58. FOLy: an integrated database for the classification and functional annotation of fungal oxidoreductases potentially involved in the degradation of lignin and related aromatic compounds.
    Levasseur A; Piumi F; Coutinho PM; Rancurel C; Asther M; Delattre M; Henrissat B; Pontarotti P; Asther M; Record E
    Fungal Genet Biol; 2008 May; 45(5):638-45. PubMed ID: 18308593
    [TBL] [Abstract][Full Text] [Related]  

  • 59. pH-induced structural changes of tyrosinase from Agaricus bisporus using fluorescence and in silico methods.
    Ioniţă E; Stănciuc N; Aprodu I; Râpeanu G; Bahrim G
    J Sci Food Agric; 2014 Aug; 94(11):2338-44. PubMed ID: 24425348
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification of Amino Acid Residues Responsible for C-H Activation in Type-III Copper Enzymes by Generating Tyrosinase Activity in a Catechol Oxidase.
    Kampatsikas I; Pretzler M; Rompel A
    Angew Chem Int Ed Engl; 2020 Nov; 59(47):20940-20945. PubMed ID: 32701181
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.