BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 16430704)

  • 1. The DnaK chaperone machinery converts the native FlhD2C2 hetero-tetramer into a functional transcriptional regulator of flagellar regulon expression in Salmonella.
    Takaya A; Matsui M; Tomoyasu T; Kaya M; Yamamoto T
    Mol Microbiol; 2006 Feb; 59(4):1327-40. PubMed ID: 16430704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FliT acts as an anti-FlhD2C2 factor in the transcriptional control of the flagellar regulon in Salmonella enterica serovar typhimurium.
    Yamamoto S; Kutsukake K
    J Bacteriol; 2006 Sep; 188(18):6703-8. PubMed ID: 16952964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of the atypical prokaryotic transcription activator FlhD2C2 with early promoters of the flagellar gene hierarchy.
    Claret L; Hughes C
    J Mol Biol; 2002 Aug; 321(2):185-99. PubMed ID: 12144778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The interaction dynamics of a negative feedback loop regulates flagellar number in Salmonella enterica serovar Typhimurium.
    Aldridge C; Poonchareon K; Saini S; Ewen T; Soloyva A; Rao CV; Imada K; Minamino T; Aldridge PD
    Mol Microbiol; 2010 Dec; 78(6):1416-30. PubMed ID: 21143315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Turnover of FlhD and FlhC, master regulator proteins for Salmonella flagellum biogenesis, by the ATP-dependent ClpXP protease.
    Tomoyasu T; Takaya A; Isogai E; Yamamoto T
    Mol Microbiol; 2003 Apr; 48(2):443-52. PubMed ID: 12675803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FliT selectively enhances proteolysis of FlhC subunit in FlhD4C2 complex by an ATP-dependent protease, ClpXP.
    Sato Y; Takaya A; Mouslim C; Hughes KT; Yamamoto T
    J Biol Chem; 2014 Nov; 289(47):33001-11. PubMed ID: 25278020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deciphering bacterial flagellar gene regulatory networks in the genomic era.
    Smith TG; Hoover TR
    Adv Appl Microbiol; 2009; 67():257-95. PubMed ID: 19245942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding and transcriptional activation of non-flagellar genes by the Escherichia coli flagellar master regulator FlhD2C2.
    Stafford GP; Ogi T; Hughes C
    Microbiology (Reading); 2005 Jun; 151(Pt 6):1779-1788. PubMed ID: 15941987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The rate of protein secretion dictates the temporal dynamics of flagellar gene expression.
    Brown JD; Saini S; Aldridge C; Herbert J; Rao CV; Aldridge PD
    Mol Microbiol; 2008 Nov; 70(4):924-37. PubMed ID: 18811728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RflM functions as a transcriptional repressor in the autogenous control of the Salmonella Flagellar master operon flhDC.
    Singer HM; Erhardt M; Hughes KT
    J Bacteriol; 2013 Sep; 195(18):4274-82. PubMed ID: 23873910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multidrug Resistance Regulators MarA, SoxS, Rob, and RamA Repress Flagellar Gene Expression and Motility in Salmonella enterica Serovar Typhimurium.
    Thota SS; Chubiz LM
    J Bacteriol; 2019 Dec; 201(23):. PubMed ID: 31501286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The chaperone binding domain of SopE inhibits transport via flagellar and SPI-1 TTSS in the absence of InvB.
    Ehrbar K; Winnen B; Hardt WD
    Mol Microbiol; 2006 Jan; 59(1):248-64. PubMed ID: 16359332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two novel regulatory genes, fliT and fliZ, in the flagellar regulon of Salmonella.
    Kutsukake K; Ikebe T; Yamamoto S
    Genes Genet Syst; 1999 Dec; 74(6):287-92. PubMed ID: 10791024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EAL domain protein YdiV acts as an anti-FlhD4C2 factor responsible for nutritional control of the flagellar regulon in Salmonella enterica Serovar Typhimurium.
    Wada T; Morizane T; Abo T; Tominaga A; Inoue-Tanaka K; Kutsukake K
    J Bacteriol; 2011 Apr; 193(7):1600-11. PubMed ID: 21278297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the FliA-FlgM regulatory system on the transcriptional control of the flagellar regulon and flagellar formation in Salmonella typhimurium.
    Kutsukake K; Iino T
    J Bacteriol; 1994 Jun; 176(12):3598-605. PubMed ID: 8206838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Docking of cytosolic chaperone-substrate complexes at the membrane ATPase during flagellar type III protein export.
    Thomas J; Stafford GP; Hughes C
    Proc Natl Acad Sci U S A; 2004 Mar; 101(11):3945-50. PubMed ID: 15001708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functions of the subunits in the FlhD(2)C(2) transcriptional master regulator of bacterial flagellum biogenesis and swarming.
    Claret L; Hughes C
    J Mol Biol; 2000 Nov; 303(4):467-78. PubMed ID: 11054284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of the Escherichia coli FlhDC complex, a prokaryotic heteromeric regulator of transcription.
    Wang S; Fleming RT; Westbrook EM; Matsumura P; McKay DB
    J Mol Biol; 2006 Jan; 355(4):798-808. PubMed ID: 16337229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The csgD promoter, a control unit for biofilm formation in Salmonella typhimurium.
    Gerstel U; Römling U
    Res Microbiol; 2003 Dec; 154(10):659-67. PubMed ID: 14643403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual regulatory pathways of flagellar gene expression by ClpXP protease in enterohaemorrhagic Escherichia coli.
    Kitagawa R; Takaya A; Yamamoto T
    Microbiology (Reading); 2011 Nov; 157(Pt 11):3094-3103. PubMed ID: 21903756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.