These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 1643077)

  • 1. Dual effects of calcium on ATP-sensitive potassium channels of frog skeletal muscle.
    Krippeit-Drews P; Lönnendonker U
    Biochim Biophys Acta; 1992 Jul; 1108(1):119-22. PubMed ID: 1643077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Internal Ca2+ ions inactivate and modify ATP-sensitive potassium channels in adult mouse skeletal muscle.
    Hehl S; Moser C; Weik R; Neumcke B
    Biochim Biophys Acta; 1994 Mar; 1190(2):257-63. PubMed ID: 8142424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation by Mg2+ and ADP of ATP-sensitive potassium channels in frog skeletal muscle.
    Forestier C; Vivaudou M
    J Membr Biol; 1993 Feb; 132(1):87-94. PubMed ID: 8459449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracellular protons control the affinity of skeletal muscle ATP-sensitive K+ channels for potassium-channel-openers.
    Forestier C; Depresle Y; Vivaudou M
    FEBS Lett; 1993 Jul; 325(3):276-80. PubMed ID: 8391482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skeletal muscle ATP-sensitive K+ channels recorded from sarcolemmal blebs of split fibers: ATP inhibition is reduced by magnesium and ADP.
    Vivaudou MB; Arnoult C; Villaz M
    J Membr Biol; 1991 Jun; 122(2):165-75. PubMed ID: 1910095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cross-talk between ATP-regulated K+ channels and Na+ transport via cellular metabolism in frog skin principal cells.
    Urbach V; Van Kerkhove E; Maguire D; Harvey BJ
    J Physiol; 1996 Feb; 491 ( Pt 1)(Pt 1):99-109. PubMed ID: 9011625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vanadate as an activator of ATP--sensitive potassium channels in mouse skeletal muscle.
    Neumcke B; Weik R
    Eur Biophys J; 1991; 19(3):119-23. PubMed ID: 2060492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies of the unitary properties of adenosine-5'-triphosphate-regulated potassium channels of frog skeletal muscle.
    Spruce AE; Standen NB; Stanfield PR
    J Physiol; 1987 Jan; 382():213-36. PubMed ID: 2442362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modification by protons of frog skeletal muscle KATP channels: effects on ion conduction and nucleotide inhibition.
    Vivaudou M; Forestier C
    J Physiol; 1995 Aug; 486 ( Pt 3)(Pt 3):629-45. PubMed ID: 7473225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-conductance states of K+ channels in adult mouse skeletal muscle.
    Weik R; Lönnendonker U; Neumcke B
    Biochim Biophys Acta; 1989 Aug; 983(2):127-34. PubMed ID: 2758054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Similarity of ATP-dependent K+ channels in skeletal muscle fibres from normal and mutant mdx mice.
    Allard B; Rougier O
    J Physiol; 1997 Jan; 498 ( Pt 2)(Pt 2):319-25. PubMed ID: 9032681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The flickery block of ATP-dependent potassium channels of skeletal muscle by internal 4-aminopyridine.
    Davies NW; Pettit AI; Agarwal R; Standen NB
    Pflugers Arch; 1991 Aug; 419(1):25-31. PubMed ID: 1945759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of glibenclamide on frog skeletal muscle: evidence for K+ATP channel activation during fatigue.
    Light PE; Comtois AS; Renaud JM
    J Physiol; 1994 Mar; 475(3):495-507. PubMed ID: 8006831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potassium channels in epithelial cells.
    Iliev IG; Marino AA
    Cell Mol Biol Res; 1993; 39(6):601-11. PubMed ID: 8012451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of dihydropyridines on cation transport across the skeletal muscle membrane in the frog].
    Shvinka NE; Caffier G; Vinogradova TA; Velena AKh; Bisenieks EA
    Tsitologiia; 1988 Oct; 30(10):1254-60. PubMed ID: 2854317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium-activated potassium channels in native endothelial cells from rabbit aorta: conductance, Ca2+ sensitivity and block.
    Rusko J; Tanzi F; van Breemen C; Adams DJ
    J Physiol; 1992 Sep; 455():601-21. PubMed ID: 1484364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single potassium channel currents activated by extracellular ATP in developing chick skeletal muscle: a role for second messengers.
    Thomas SA; Hume RI
    J Neurophysiol; 1993 May; 69(5):1556-66. PubMed ID: 8389829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diverse effects of pinacidil on KATP channels in mouse skeletal muscle in the presence of different nucleotides.
    Hehl S; Neumcke B
    Cardiovasc Res; 1994 Jun; 28(6):841-6. PubMed ID: 7923289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-conductance Ca2+-activated potassium channels in secretory neurons.
    Lara J; Acevedo JJ; Onetti CG
    J Neurophysiol; 1999 Sep; 82(3):1317-25. PubMed ID: 10482751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inactivating 'ball' peptide from Shaker B blocks Ca(2+)-activated but not ATP-dependent K+ channels of rat skeletal muscle.
    Beirão PS; Davies NW; Stanfield PR
    J Physiol; 1994 Jan; 474(2):269-74. PubMed ID: 8006813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.