These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 1643087)

  • 1. Lipases from different sources vary widely in dependence of catalytic activity on water activity.
    Valivety RH; Halling PJ; Peilow AD; Macrae AR
    Biochim Biophys Acta; 1992 Jul; 1122(2):143-6. PubMed ID: 1643087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of water activity and immobilization on fatty acid selectivity for esterification reactions mediated by lipases.
    Lee CH; Parkin KL
    Biotechnol Bioeng; 2001 Oct; 75(2):219-27. PubMed ID: 11536145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor.
    Kim KK; Song HK; Shin DH; Hwang KY; Suh SW
    Structure; 1997 Feb; 5(2):173-85. PubMed ID: 9032073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and Properties of Extracellular Lipases with Transesterification Activity and 1,3-Regioselectivity from
    Takó M; KotogÁn A; Papp T; Kadaikunnan S; Alharbi NS; VÁgvölgyi C
    J Microbiol Biotechnol; 2017 Feb; 27(2):277-288. PubMed ID: 27780957
    [No Abstract]   [Full Text] [Related]  

  • 5. Molecular characterization of an extracellular acid-resistant lipase produced by Rhizopus javanicus.
    Uyttenbroeck W; Hendriks D; Vriend G; De Baere I; Moens L; Scharpé S
    Biol Chem Hoppe Seyler; 1993 Apr; 374(4):245-54. PubMed ID: 8329142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between water activity and catalytic activity of lipases in organic media. Effects of supports, loading and enzyme preparation.
    Valivety RH; Halling PJ; Peilow AD; Macrae AR
    Eur J Biochem; 1994 Jun; 222(2):461-6. PubMed ID: 8020484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipase-catalyzed esterification of 2-monoricinolein for 1,2 (2,3)-diricinolein synthesis.
    Turner C; Wani S; Wong R; Lin JT; McKeon T
    Lipids; 2006 Jan; 41(1):77-83. PubMed ID: 16555475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of arginines in stabilizing the active open-lid conformation of Rhizomucor miehei lipase.
    Holmquist M; Norin M; Hult K
    Lipids; 1993 Aug; 28(8):721-6. PubMed ID: 8377587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer modeling of substrate binding to lipases from Rhizomucor miehei, Humicola lanuginosa, and Candida rugosa.
    Norin M; Haeffner F; Achour A; Norin T; Hult K
    Protein Sci; 1994 Sep; 3(9):1493-503. PubMed ID: 7833809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of Rhizomucor miehei and Candida rugosa lipases by D-glucose in esterification between L-alanine and D-glucose.
    Somashekar BR; Lohith K; Manohar B; Divakar S
    J Biosci Bioeng; 2007 Feb; 103(2):122-8. PubMed ID: 17368393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the catalytic activity of lipases immobilized on chrysotile for esterification.
    Silva JE; Jesus PC
    An Acad Bras Cienc; 2003 Jun; 75(2):157-62. PubMed ID: 12894300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The crystal structure of lipase II from Rhizopus niveus at 2.2 A resolution.
    Kohno M; Funatsu J; Mikami B; Kugimiya W; Matsuo T; Morita Y
    J Biochem; 1996 Sep; 120(3):505-10. PubMed ID: 8902613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water activity dependence of performance of surface-displayed lipase in yeast cells: a unique water requirement for enzymatic synthetic reaction in organic media.
    Yoshida A; Hama S; Nakashima K; Kondo A
    Enzyme Microb Technol; 2011 Apr; 48(4-5):334-8. PubMed ID: 22112946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Esterification of phenolic acids catalyzed by lipases immobilized in organogels.
    Zoumpanioti M; Merianou E; Karandreas T; Stamatis H; Xenakis A
    Biotechnol Lett; 2010 Oct; 32(10):1457-62. PubMed ID: 20490615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reaction rate with suspended lipase catalyst shows similar dependence on water activity in different organic solvents.
    Valivety RH; Halling PJ; Macrae AR
    Biochim Biophys Acta; 1992 Feb; 1118(3):218-22. PubMed ID: 1737045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopic and catalytic studies of lipases in ternary hexane-1-propanol-water surfactantless microemulsion systems.
    Zoumpanioti M; Stamatis H; Papadimitriou V; Xenakis A
    Colloids Surf B Biointerfaces; 2006 Jan; 47(1):1-9. PubMed ID: 16364610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solvent-induced lid opening in lipases: a molecular dynamics study.
    Rehm S; Trodler P; Pleiss J
    Protein Sci; 2010 Nov; 19(11):2122-30. PubMed ID: 20812327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of different reaction schemes for the enzymatic synthesis of polyglycerol polyricinoleate.
    Ortega-Requena S; Gómez JL; Bastida J; Máximo F; Montiel MC; Murcia MD
    J Sci Food Agric; 2014 Aug; 94(11):2308-16. PubMed ID: 24403129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of Biodiesel with Liquid Synergetic Lipases from Rapeseed Oil Deodorizer Distillate.
    Zeng L; He Y; Jiao L; Li K; Yan Y
    Appl Biochem Biotechnol; 2017 Nov; 183(3):778-791. PubMed ID: 28353044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stereoselectivity of lipases: esterification reactions of octadecylglycerol.
    Meusel D; Weber N; Mukherjee KD
    Chem Phys Lipids; 1992 Apr; 61(2):193-8. PubMed ID: 1511492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.