BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 16431280)

  • 1. Substrate specificity of insect trypsins and the role of their subsites in catalysis.
    Lopes AR; Juliano MA; Marana SR; Juliano L; Terra WR
    Insect Biochem Mol Biol; 2006 Feb; 36(2):130-40. PubMed ID: 16431280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subsite substrate specificity of midgut insect chymotrypsins.
    Sato PM; Lopes AR; Juliano L; Juliano MA; Terra WR
    Insect Biochem Mol Biol; 2008 Jun; 38(6):628-33. PubMed ID: 18510974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coevolution of insect trypsins and inhibitors.
    Lopes AR; Juliano MA; Juliano L; Terra WR
    Arch Insect Biochem Physiol; 2004 Mar; 55(3):140-52. PubMed ID: 14981658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Digestive peptidase evolution in holometabolous insects led to a divergent group of enzymes in Lepidoptera.
    Dias RO; Via A; Brandão MM; Tramontano A; Silva-Filho MC
    Insect Biochem Mol Biol; 2015 Mar; 58():1-11. PubMed ID: 25600115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering the S1' subsite of trypsin: design of a protease which cleaves between dibasic residues.
    Kurth T; Grahn S; Thormann M; Ullmann D; Hofmann HJ; Jakubke HD; Hedstrom L
    Biochemistry; 1998 Aug; 37(33):11434-40. PubMed ID: 9708978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the P2' and P3' specificities of thrombin using fluorescence-quenched substrates and mapping of the subsites by mutagenesis.
    Le Bonniec BF; Myles T; Johnson T; Knight CG; Tapparelli C; Stone SR
    Biochemistry; 1996 Jun; 35(22):7114-22. PubMed ID: 8679538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subsites of trypsin active site favor catalysis or substrate binding.
    Marana SR; Lopes AR; Juliano L; Juliano MA; Ferreira C; Terra WR
    Biochem Biophys Res Commun; 2002 Jan; 290(1):494-7. PubMed ID: 11779198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active subsite properties, subsite residues and targeting to lysosomes or midgut lumen of cathepsins L from the beetle Tenebrio molitor.
    Damasceno TF; Dias RO; de Oliveira JR; Salinas RK; Juliano MA; Ferreira C; Terra WR
    Insect Biochem Mol Biol; 2017 Oct; 89():17-30. PubMed ID: 28838758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Converting trypsin to chymotrypsin: structural determinants of S1' specificity.
    Kurth T; Ullmann D; Jakubke HD; Hedstrom L
    Biochemistry; 1997 Aug; 36(33):10098-104. PubMed ID: 9254605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective inhibition of trypsins by insect peptides: role of P6-P10 loop.
    Kellenberger C; Ferrat G; Leone P; Darbon H; Roussel A
    Biochemistry; 2003 Nov; 42(46):13605-12. PubMed ID: 14622007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cathepsin B carboxydipeptidase specificity analysis using internally quenched fluorescent peptides.
    Cezari MH; Puzer L; Juliano MA; Carmona AK; Juliano L
    Biochem J; 2002 Nov; 368(Pt 1):365-9. PubMed ID: 12201820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the P1' specificity of the matrix metalloproteinases: effect of S1' pocket mutations in matrilysin and stromelysin-1.
    Welch AR; Holman CM; Huber M; Brenner MC; Browner MF; Van Wart HE
    Biochemistry; 1996 Aug; 35(31):10103-9. PubMed ID: 8756473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diversity of trypsins in the Mediterranean corn borer Sesamia nonagrioides (Lepidoptera: Noctuidae), revealed by nucleic acid sequences and enzyme purification.
    Díaz-Mendoza M; Ortego F; García de Lacoba M; Magaña C; de la Poza M; Farinós GP; Castañera P; Hernández-Crespo P
    Insect Biochem Mol Biol; 2005 Sep; 35(9):1005-20. PubMed ID: 15979001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insect chymotrypsins: chloromethyl ketone inactivation and substrate specificity relative to possible coevolutional adaptation of insects and plants.
    Lopes AR; Sato PM; Terra WR
    Arch Insect Biochem Physiol; 2009 Mar; 70(3):188-203. PubMed ID: 19194984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tyrosine sulfation of human trypsin steers S2' subsite selectivity towards basic amino acids.
    Szabó A; Salameh MA; Ludwig M; Radisky ES; Sahin-Tóth M
    PLoS One; 2014; 9(7):e102063. PubMed ID: 25010489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative evaluation of each catalytic subsite of cathepsin B for inhibitory activity based on inhibitory activity-binding mode relationship of epoxysuccinyl inhibitors by X-ray crystal structure analyses of complexes.
    Watanabe D; Yamamoto A; Tomoo K; Matsumoto K; Murata M; Kitamura K; Ishida T
    J Mol Biol; 2006 Oct; 362(5):979-93. PubMed ID: 16950396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic and modeling studies of S3-S3' subsites of HIV proteinases.
    Tözsér J; Weber IT; Gustchina A; Bláha I; Copeland TD; Louis JM; Oroszlan S
    Biochemistry; 1992 May; 31(20):4793-800. PubMed ID: 1591240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subsite specificity (S3, S2, S1', S2' and S3') of oligopeptidase B from Trypanosoma cruzi and Trypanosoma brucei using fluorescent quenched peptides: comparative study and identification of specific carboxypeptidase activity.
    Hemerly JP; Oliveira V; Del Nery E; Morty RE; Andrews NW; Juliano MA; Juliano L
    Biochem J; 2003 Aug; 373(Pt 3):933-9. PubMed ID: 12737623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of beta-casein hydrolysis by wild-type and engineered trypsin.
    Vorob'ev MM; Dalgalarrondo M; Chobert JM; Haertlé T
    Biopolymers; 2000 Oct; 54(5):355-64. PubMed ID: 10935975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleophile specificity in papain-catalyzed acyl transfer reactions.
    Schuster M; Jakubke HD; Kasche V
    Biomed Biochim Acta; 1991; 50(10-11):S122-6. PubMed ID: 1820032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.