These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
437 related articles for article (PubMed ID: 16431373)
1. Evidence that errors made by DNA polymerase alpha are corrected by DNA polymerase delta. Pavlov YI; Frahm C; Nick McElhinny SA; Niimi A; Suzuki M; Kunkel TA Curr Biol; 2006 Jan; 16(2):202-7. PubMed ID: 16431373 [TBL] [Abstract][Full Text] [Related]
2. Evidence for interplay among yeast replicative DNA polymerases alpha, delta and epsilon from studies of exonuclease and polymerase active site mutations. Pavlov YI; Maki S; Maki H; Kunkel TA BMC Biol; 2004 May; 2():11. PubMed ID: 15163346 [TBL] [Abstract][Full Text] [Related]
3. Exonuclease 1 preferentially repairs mismatches generated by DNA polymerase α. Liberti SE; Larrea AA; Kunkel TA DNA Repair (Amst); 2013 Feb; 12(2):92-6. PubMed ID: 23245696 [TBL] [Abstract][Full Text] [Related]
4. Replicative DNA polymerase δ but not ε proofreads errors in Cis and in Trans. Flood CL; Rodriguez GP; Bao G; Shockley AH; Kow YW; Crouse GF PLoS Genet; 2015 Mar; 11(3):e1005049. PubMed ID: 25742645 [TBL] [Abstract][Full Text] [Related]
5. Genetic Networks Required to Coordinate Chromosome Replication by DNA Polymerases α, δ, and ε in Saccharomyces cerevisiae. Dubarry M; Lawless C; Banks AP; Cockell S; Lydall D G3 (Bethesda); 2015 Aug; 5(10):2187-97. PubMed ID: 26297725 [TBL] [Abstract][Full Text] [Related]
6. In vivo consequences of putative active site mutations in yeast DNA polymerases alpha, epsilon, delta, and zeta. Pavlov YI; Shcherbakova PV; Kunkel TA Genetics; 2001 Sep; 159(1):47-64. PubMed ID: 11560886 [TBL] [Abstract][Full Text] [Related]
7. Evidence from mutational specificity studies that yeast DNA polymerases delta and epsilon replicate different DNA strands at an intracellular replication fork. Karthikeyan R; Vonarx EJ; Straffon AF; Simon M; Faye G; Kunz BA J Mol Biol; 2000 Jun; 299(2):405-19. PubMed ID: 10860748 [TBL] [Abstract][Full Text] [Related]
8. Both DNA Polymerases δ and ε Contact Active and Stalled Replication Forks Differently. Yu C; Gan H; Zhang Z Mol Cell Biol; 2017 Nov; 37(21):. PubMed ID: 28784720 [TBL] [Abstract][Full Text] [Related]
9. Mismatch repair-independent increase in spontaneous mutagenesis in yeast lacking non-essential subunits of DNA polymerase ε. Aksenova A; Volkov K; Maceluch J; Pursell ZF; Rogozin IB; Kunkel TA; Pavlov YI; Johansson E PLoS Genet; 2010 Nov; 6(11):e1001209. PubMed ID: 21124948 [TBL] [Abstract][Full Text] [Related]
10. Saccharomyces cerevisiae DNA polymerase delta: high fidelity for base substitutions but lower fidelity for single- and multi-base deletions. Fortune JM; Pavlov YI; Welch CM; Johansson E; Burgers PM; Kunkel TA J Biol Chem; 2005 Aug; 280(33):29980-7. PubMed ID: 15964835 [TBL] [Abstract][Full Text] [Related]
11. Emergence of DNA polymerase ε antimutators that escape error-induced extinction in yeast. Williams LN; Herr AJ; Preston BD Genetics; 2013 Mar; 193(3):751-70. PubMed ID: 23307893 [TBL] [Abstract][Full Text] [Related]
12. DNA polymerase ε and its roles in genome stability. Henninger EE; Pursell ZF IUBMB Life; 2014 May; 66(5):339-51. PubMed ID: 24861832 [TBL] [Abstract][Full Text] [Related]
13. How asymmetric DNA replication achieves symmetrical fidelity. Zhou ZX; Lujan SA; Burkholder AB; St Charles J; Dahl J; Farrell CE; Williams JS; Kunkel TA Nat Struct Mol Biol; 2021 Dec; 28(12):1020-1028. PubMed ID: 34887558 [TBL] [Abstract][Full Text] [Related]
14. The 3'-->5' exonuclease of DNA polymerase delta can substitute for the 5' flap endonuclease Rad27/Fen1 in processing Okazaki fragments and preventing genome instability. Jin YH; Obert R; Burgers PM; Kunkel TA; Resnick MA; Gordenin DA Proc Natl Acad Sci U S A; 2001 Apr; 98(9):5122-7. PubMed ID: 11309502 [TBL] [Abstract][Full Text] [Related]
15. Fidelity of DNA polymerase delta holoenzyme from Saccharomyces cerevisiae: the sliding clamp proliferating cell nuclear antigen decreases its fidelity. Hashimoto K; Shimizu K; Nakashima N; Sugino A Biochemistry; 2003 Dec; 42(48):14207-13. PubMed ID: 14640688 [TBL] [Abstract][Full Text] [Related]
16. Fidelity consequences of the impaired interaction between DNA polymerase epsilon and the GINS complex. Garbacz M; Araki H; Flis K; Bebenek A; Zawada AE; Jonczyk P; Makiela-Dzbenska K; Fijalkowska IJ DNA Repair (Amst); 2015 May; 29():23-35. PubMed ID: 25758782 [TBL] [Abstract][Full Text] [Related]
17. Unique error signature of the four-subunit yeast DNA polymerase epsilon. Shcherbakova PV; Pavlov YI; Chilkova O; Rogozin IB; Johansson E; Kunkel TA J Biol Chem; 2003 Oct; 278(44):43770-80. PubMed ID: 12882968 [TBL] [Abstract][Full Text] [Related]
18. Lagging strand DNA synthesis by calf thymus DNA polymerases alpha, beta, delta and epsilon in the presence of auxiliary proteins. Podust VN; Hübscher U Nucleic Acids Res; 1993 Feb; 21(4):841-6. PubMed ID: 8451186 [TBL] [Abstract][Full Text] [Related]
19. Separable, Ctf4-mediated recruitment of DNA Polymerase α for initiation of DNA synthesis at replication origins and lagging-strand priming during replication elongation. Porcella SY; Koussa NC; Tang CP; Kramer DN; Srivastava P; Smith DJ PLoS Genet; 2020 May; 16(5):e1008755. PubMed ID: 32379761 [TBL] [Abstract][Full Text] [Related]
20. Dividing the workload at a eukaryotic replication fork. Kunkel TA; Burgers PM Trends Cell Biol; 2008 Nov; 18(11):521-7. PubMed ID: 18824354 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]