BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 1643217)

  • 1. Numerical study of arterial flow during sustained external acceleration.
    Cornet DA; Young DF; Rogge TR
    Biomed Sci Instrum; 1992; 28():135-43. PubMed ID: 1643217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical simulation of local blood flow in the carotid and cerebral arteries under altered gravity.
    Kim CS; Kiris C; Kwak D; David T
    J Biomech Eng; 2006 Apr; 128(2):194-202. PubMed ID: 16524330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simulation study on +Gz protection afforded by extended coverage anti-G suits.
    Lu H; Bai J; Zhang L; Wang S
    Space Med Med Eng (Beijing); 1998 Aug; 11(4):240-4. PubMed ID: 11543239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A cardiovascular model for studying impairment of cerebral function during +Gz stress.
    Jaron D; Moore TW; Chu CL
    Aviat Space Environ Med; 1984 Jan; 55(1):24-31. PubMed ID: 6696692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of the lattice Boltzmann model to simulated stenosis growth in a two-dimensional carotid artery.
    Boyd J; Buick J; Cosgrove JA; Stansell P
    Phys Med Biol; 2005 Oct; 50(20):4783-96. PubMed ID: 16204872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Turbulence modeling in three-dimensional stenosed arterial bifurcations.
    Banks J; Bressloff NW
    J Biomech Eng; 2007 Feb; 129(1):40-50. PubMed ID: 17227097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of continuous arterial blood flow in patients with rotary cardiac assist device on the washout of a stenosis wake in the carotid bifurcation: a computer simulation study.
    Prosi M; Perktold K; Schima H
    J Biomech; 2007; 40(10):2236-43. PubMed ID: 17157302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional modelling of the human carotid artery using the lattice Boltzmann method: I. model and velocity analysis.
    Boyd J; Buick JM
    Phys Med Biol; 2008 Oct; 53(20):5767-79. PubMed ID: 18824786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological considerations concerning positive pressure breathing (PBG) during +Gz.
    Clere JM; Ossard G; Melchior F
    Physiologist; 1993 Feb; 36(1 Suppl):S102-5. PubMed ID: 11538504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mathematical modeling of arterial blood flow and correlation to atherosclerosis.
    Perktold K; Rappitsch G
    Technol Health Care; 1995 Dec; 3(3):139-51. PubMed ID: 8749862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling transition to turbulence in eccentric stenotic flows.
    Varghese SS; Frankel SH; Fischer PF
    J Biomech Eng; 2008 Feb; 130(1):014503. PubMed ID: 18298194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regional distribution of cardiac output in unanesthetized baboons during +Gz stress with and without an anti-G suit.
    Laughlin MH; Burns JW; Parnell MJ
    Aviat Space Environ Med; 1982 Feb; 53(2):133-41. PubMed ID: 7059329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of the collateral capacity of the circle of Willis of patients with severe carotid artery stenosis by 3D computational modeling.
    Long Q; Luppi L; König CS; Rinaldo V; Das SK
    J Biomech; 2008 Aug; 41(12):2735-42. PubMed ID: 18674765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational simulation of intracoronary flow based on real coronary geometry.
    Boutsianis E; Dave H; Frauenfelder T; Poulikakos D; Wildermuth S; Turina M; Ventikos Y; Zund G
    Eur J Cardiothorac Surg; 2004 Aug; 26(2):248-56. PubMed ID: 15296879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of flow disturbance in a stenosed carotid artery bifurcation using two-equation transitional and turbulence models.
    Tan FP; Soloperto G; Bashford S; Wood NB; Thom S; Hughes A; Xu XY
    J Biomech Eng; 2008 Dec; 130(6):061008. PubMed ID: 19045537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Turbulence detection in a stenosed artery bifurcation by numerical simulation of pulsatile blood flow using the low-Reynolds number turbulence model.
    Ghalichi F; Deng X
    Biorheology; 2003; 40(6):637-54. PubMed ID: 14610313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical study of pressure and flow propagation in arteries.
    Stergiopulos N; Young DF; Rogge TR
    Biomed Sci Instrum; 1991; 27():93-104. PubMed ID: 2065183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of dipyridamole on the cardiovascular response to +Gz stress in miniature swine.
    Peterson DF; Burns JW; Fanton JW; Laughlin MH
    Aviat Space Environ Med; 1989 Mar; 60(3):218-25. PubMed ID: 2712800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological effects of sustained acceleration.
    Vogt LH
    Life Sci Space Res; 1976; 14():77-89. PubMed ID: 11977292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mathematical modeling of high G protection afforded by various anti-G equipment and techniques.
    Lu HB; Zhang LF; Bai J; Liu X; Zhang GP
    Aviat Space Environ Med; 2007 Feb; 78(2):100-9. PubMed ID: 17310880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.