BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1056 related articles for article (PubMed ID: 16432200)

  • 1. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters.
    Saxonov S; Berg P; Brutlag DL
    Proc Natl Acad Sci U S A; 2006 Jan; 103(5):1412-7. PubMed ID: 16432200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CpGcluster: a distance-based algorithm for CpG-island detection.
    Hackenberg M; Previti C; Luque-Escamilla PL; Carpena P; Martínez-Aroza J; Oliver JL
    BMC Bioinformatics; 2006 Oct; 7():446. PubMed ID: 17038168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CpG mutation rates in the human genome are highly dependent on local GC content.
    Fryxell KJ; Moon WJ
    Mol Biol Evol; 2005 Mar; 22(3):650-8. PubMed ID: 15537806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-scale human promoter mapping using CpG islands.
    Ioshikhes IP; Zhang MQ
    Nat Genet; 2000 Sep; 26(1):61-3. PubMed ID: 10973249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA methylation and structural and functional bimodality of vertebrate promoters.
    Elango N; Yi SV
    Mol Biol Evol; 2008 Aug; 25(8):1602-8. PubMed ID: 18469331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directionality of point mutation and 5-methylcytosine deamination rates in the chimpanzee genome.
    Jiang C; Zhao Z
    BMC Genomics; 2006 Dec; 7():316. PubMed ID: 17166280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Features and trend of loss of promoter-associated CpG islands in the human and mouse genomes.
    Jiang C; Han L; Su B; Li WH; Zhao Z
    Mol Biol Evol; 2007 Sep; 24(9):1991-2000. PubMed ID: 17591602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global, comparative analysis of tissue-specific promoter CpG methylation.
    Schilling E; Rehli M
    Genomics; 2007 Sep; 90(3):314-23. PubMed ID: 17582736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strand bias in complementary single-nucleotide polymorphisms of transcribed human sequences: evidence for functional effects of synonymous polymorphisms.
    Qu HQ; Lawrence SG; Guo F; Majewski J; Polychronakos C
    BMC Genomics; 2006 Aug; 7():213. PubMed ID: 16916449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome.
    Weber M; Hellmann I; Stadler MB; Ramos L; Pääbo S; Rebhan M; Schübeler D
    Nat Genet; 2007 Apr; 39(4):457-66. PubMed ID: 17334365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutational spectrum in the recent human genome inferred by single nucleotide polymorphisms.
    Jiang C; Zhao Z
    Genomics; 2006 Nov; 88(5):527-34. PubMed ID: 16860534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-scale relationships between cytosine methylation and dinucleotide abundances in animals.
    Simmen MW
    Genomics; 2008 Jul; 92(1):33-40. PubMed ID: 18485662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new class of tissue-specifically methylated regions involving entire CpG islands in the mouse.
    Suzuki M; Sato S; Arai Y; Shinohara T; Tanaka S; Greally JM; Hattori N; Shiota K
    Genes Cells; 2007 Dec; 12(12):1305-14. PubMed ID: 18076568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution of DNA methylation, CpGs, and CpG islands in human isochores.
    Varriale A; Bernardi G
    Genomics; 2010 Jan; 95(1):25-8. PubMed ID: 19800400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence context analysis of 8.2 million single nucleotide polymorphisms in the human genome.
    Zhao Z; Zhang F
    Gene; 2006 Feb; 366(2):316-24. PubMed ID: 16314054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong and weak male mutation bias at different sites in the primate genomes: insights from the human-chimpanzee comparison.
    Taylor J; Tyekucheva S; Zody M; Chiaromonte F; Makova KD
    Mol Biol Evol; 2006 Mar; 23(3):565-73. PubMed ID: 16280537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Guanine quadruplex DNA structure restricts methylation of CpG dinucleotides genome-wide.
    Halder R; Halder K; Sharma P; Garg G; Sengupta S; Chowdhury S
    Mol Biosyst; 2010 Dec; 6(12):2439-47. PubMed ID: 20877913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transitional CpG methylation between promoters and retroelements of tissue-specific genes during human mesenchymal cell differentiation.
    Kang MI; Kim HS; Jung YC; Kim YH; Hong SJ; Kim MK; Baek KH; Kim CC; Rhyu MG
    J Cell Biochem; 2007 Sep; 102(1):224-39. PubMed ID: 17352407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of genome architecture and epigenetic factors on susceptibility of promoter CpG islands to aberrant DNA methylation induction.
    Takeshima H; Yamashita S; Shimazu T; Ushijima T
    Genomics; 2011 Sep; 98(3):182-8. PubMed ID: 21683780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of methylated CpGs in DNA sequences using a support vector machine.
    Bhasin M; Zhang H; Reinherz EL; Reche PA
    FEBS Lett; 2005 Aug; 579(20):4302-8. PubMed ID: 16051225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 53.