These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 16432577)

  • 21. Quaternary ammonium room-temperature ionic liquid including an oxygen atom in side chain/lithium salt binary electrolytes: ionic conductivity and 1H, 7Li, and 19F NMR studies on diffusion coefficients and local motions.
    Hayamizu K; Tsuzuki S; Seki S; Ohno Y; Miyashiro H; Kobayashi Y
    J Phys Chem B; 2008 Jan; 112(4):1189-97. PubMed ID: 18179199
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anthraquinone based polymer as high performance cathode material for rechargeable lithium batteries.
    Song Z; Zhan H; Zhou Y
    Chem Commun (Camb); 2009 Jan; (4):448-50. PubMed ID: 19137181
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Experimental visualization of lithium diffusion in LixFePO4.
    Nishimura S; Kobayashi G; Ohoyama K; Kanno R; Yashima M; Yamada A
    Nat Mater; 2008 Sep; 7(9):707-11. PubMed ID: 18690238
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rechargeable room-temperature CF(x)-sodium battery.
    Liu W; Li H; Xie JY; Fu ZW
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2209-12. PubMed ID: 24494989
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Halogen: a high-capacity cathode for rechargeable alkaline batteries.
    Pan JQ; Sun YZ; Wan PY; Wang ZH; Liu XG
    Chem Commun (Camb); 2005 Jul; (26):3340-2. PubMed ID: 15983667
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ambient temperature, zinc ion-conducting, binary molten electrolyte based on acetamide and zinc perchlorate: Application in rechargeable zinc batteries.
    Venkata Narayanan NS; Ashokraj BV; Sampath S
    J Colloid Interface Sci; 2010 Feb; 342(2):505-12. PubMed ID: 19914628
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries.
    Ellis BL; Makahnouk WR; Makimura Y; Toghill K; Nazar LF
    Nat Mater; 2007 Oct; 6(10):749-53. PubMed ID: 17828278
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanoscale alloying effect of gold-platinum nanoparticles as cathode catalysts on the performance of a rechargeable lithium-oxygen battery.
    Yin J; Fang B; Luo J; Wanjala B; Mott D; Loukrakpam R; Ng MS; Li Z; Hong J; Whittingham MS; Zhong CJ
    Nanotechnology; 2012 Aug; 23(30):305404. PubMed ID: 22781275
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A feasibility study on the use of Li(4)V(3)O(8) as a high capacity cathode material for lithium-ion batteries.
    Ng SH; Tran N; Bramnik KG; Hibst H; Novák P
    Chemistry; 2008; 14(35):11141-8. PubMed ID: 18979463
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oxidation reaction of polyether-based material and its suppression in lithium rechargeable battery using 4 V class cathode, LiNi1/3Mn1/3Co1/3O2.
    Kobayashi T; Kobayashi Y; Tabuchi M; Shono K; Ohno Y; Mita Y; Miyashiro H
    ACS Appl Mater Interfaces; 2013 Dec; 5(23):12387-93. PubMed ID: 24144204
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An all-organic rechargeable battery using bipolar polyparaphenylene as a redox-active cathode and anode.
    Zhu LM; Lei AW; Cao YL; Ai XP; Yang HX
    Chem Commun (Camb); 2013 Jan; 49(6):567-9. PubMed ID: 23212556
    [TBL] [Abstract][Full Text] [Related]  

  • 32. X-ray absorption spectroscopic study of LiCoO2 as the negative electrode of lithium-ion batteries.
    Chadwick AV; Savin SL; Alcántara R; Fernández Lisbona D; Lavela P; Ortiz GF; Tirado JL
    Chemphyschem; 2006 May; 7(5):1086-91. PubMed ID: 16612798
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ion exchange membranes as electrolyte to improve high temperature capacity retention of LiMn2O4 cathode lithium-ion batteries.
    Liu Y; Tan L; Li L
    Chem Commun (Camb); 2012 Oct; 48(79):9858-60. PubMed ID: 22903057
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans.
    Mishra D; Kim DJ; Ralph DE; Ahn JG; Rhee YH
    Waste Manag; 2008; 28(2):333-8. PubMed ID: 17376665
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-performance lithium battery anodes using silicon nanowires.
    Chan CK; Peng H; Liu G; McIlwrath K; Zhang XF; Huggins RA; Cui Y
    Nat Nanotechnol; 2008 Jan; 3(1):31-5. PubMed ID: 18654447
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural and electrochemical characterization of nanocrystalline LI[Li0.12Ni0.32Mn(0.56)]O2 synthesized by a polymer-pyrolysis route.
    Yu L; Yang H; Ai X; Cao Y
    J Phys Chem B; 2005 Jan; 109(3):1148-54. PubMed ID: 16851074
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Issues and challenges facing rechargeable lithium batteries.
    Tarascon JM; Armand M
    Nature; 2001 Nov; 414(6861):359-67. PubMed ID: 11713543
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The use of tin-decorated mesoporous carbon as an anode material for rechargeable lithium batteries.
    Grigoriants I; Sominski L; Li H; Ifargan I; Aurbach D; Gedanken A
    Chem Commun (Camb); 2005 Feb; (7):921-3. PubMed ID: 15700082
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tin nanoparticles encapsulated in porous multichannel carbon microtubes: preparation by single-nozzle electrospinning and application as anode material for high-performance Li-based batteries.
    Yu Y; Gu L; Zhu C; van Aken PA; Maier J
    J Am Chem Soc; 2009 Nov; 131(44):15984-5. PubMed ID: 19886691
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metal oxychlorides as cathode materials for chloride ion batteries.
    Zhao X; Zhao-Karger Z; Wang D; Fichtner M
    Angew Chem Int Ed Engl; 2013 Dec; 52(51):13621-4. PubMed ID: 24346944
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.