BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 16432758)

  • 1. Differential interaction of magnetic nanoparticles with tumor cells and peripheral blood cells.
    Clement JH; Schwalbe M; Buske N; Wagner K; Schnabelrauch M; Görnert P; Kliche KO; Pachmann K; Weitschies W; Höffken K
    J Cancer Res Clin Oncol; 2006 May; 132(5):287-92. PubMed ID: 16432758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of rare MCF-7 breast carcinoma cells from mixtures of human peripheral leukocytes by magnetic deposition analysis.
    Fang B; Zborowski M; Moore LR
    Cytometry; 1999 Aug; 36(4):294-302. PubMed ID: 10404144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific labelling of cell populations in blood with targeted immuno-fluorescent/magnetic glyconanoparticles.
    Gallo J; García I; Genicio N; Padro D; Penadés S
    Biomaterials; 2011 Dec; 32(36):9818-25. PubMed ID: 21940045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell-specific cytotoxicity of dextran-stabilized magnetite nanoparticles.
    Ding J; Tao K; Li J; Song S; Sun K
    Colloids Surf B Biointerfaces; 2010 Aug; 79(1):184-90. PubMed ID: 20427159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of purity and enrichment of CD34+ cells from bone marrow, umbilical cord and peripheral blood (primed for apheresis) using five separation systems.
    de Wynter EA; Coutinho LH; Pei X; Marsh JC; Hows J; Luft T; Testa NG
    Stem Cells; 1995 Sep; 13(5):524-32. PubMed ID: 8528102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of two immunomagnetic separation technologies to deplete T cells from human blood samples.
    Lara O; Tong X; Zborowski M; Farag SS; Chalmers JJ
    Biotechnol Bioeng; 2006 May; 94(1):66-80. PubMed ID: 16518837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induction heating studies of dextran coated MgFe2O4 nanoparticles for magnetic hyperthermia.
    Khot VM; Salunkhe AB; Thorat ND; Ningthoujam RS; Pawar SH
    Dalton Trans; 2013 Jan; 42(4):1249-58. PubMed ID: 23138108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation of a breast cancer cell line from human blood using a quadrupole magnetic flow sorter.
    Nakamura M; Decker K; Chosy J; Comella K; Melnik K; Moore L; Lasky LC; Zborowski M; Chalmers JJ
    Biotechnol Prog; 2001; 17(6):1145-55. PubMed ID: 11735453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Separation and measurement of silver nanoparticles and silver ions using magnetic particles.
    Mwilu SK; Siska E; Baig RB; Varma RS; Heithmar E; Rogers KR
    Sci Total Environ; 2014 Feb; 472():316-23. PubMed ID: 24295749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient purification of CD4+ lymphocytes from peripheral blood progenitor cell products using affinity bead acoustophoresis.
    Lenshof A; Jamal A; Dykes J; Urbansky A; Astrand-Grundström I; Laurell T; Scheding S
    Cytometry A; 2014 Nov; 85(11):933-41. PubMed ID: 25053536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term in vitro persistence of magnetic properties after magnetic bead-based cell separation of T cells.
    Laghmouchi A; Hoogstraten C; Falkenburg JHF; Jedema I
    Scand J Immunol; 2020 Sep; 92(3):e12924. PubMed ID: 32602962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Magnetically based enhancement of nanoparticle uptake in tumor cells: combination of magnetically induced cell labeling and magnetic heating].
    Kettering M; Winter J; Zeisberger M; Alexiou C; Bremer-Streck S; Bergemann C; Kaiser WA; Hilger I
    Rofo; 2006 Dec; 178(12):1255-60. PubMed ID: 17136650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enrichment of residual tumor cells in bone marrow or peripheral blood cells in a neuroectodermal tumor model.
    Kremens B; Wieland R; Reuss R; Lennartz K; Havers W
    Pediatr Hematol Oncol; 1994; 11(6):625-31. PubMed ID: 7857785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic labeling of non-phagocytic adherent cells with iron oxide nanoparticles: a comprehensive study.
    Boutry S; Brunin S; Mahieu I; Laurent S; Vander Elst L; Muller RN
    Contrast Media Mol Imaging; 2008; 3(6):223-32. PubMed ID: 19072771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enrichment of rare cancer cells through depletion of normal cells using density and flow-through, immunomagnetic cell separation.
    Lara O; Tong X; Zborowski M; Chalmers JJ
    Exp Hematol; 2004 Oct; 32(10):891-904. PubMed ID: 15504544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunomagnetic cell enrichment detects more disseminated cancer cells than immunocytochemistry in vitro.
    Zigeuner RE; Riesenberg R; Pohla H; Hofstetter A; Oberneder R
    J Urol; 2000 Nov; 164(5):1834-7. PubMed ID: 11025779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunomagnetic separation combined with inductively coupled plasma mass spectrometry for the detection of tumor cells using gold nanoparticle labeling.
    Zhang Y; Chen B; He M; Yang B; Zhang J; Hu B
    Anal Chem; 2014 Aug; 86(16):8082-9. PubMed ID: 25054378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [A new method for isolating CD34(+) cells based on complex of magnetic nanoparticles and antibody].
    Zhao LN; Shen HB; Chen W; Zhu LZ
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2007 Jun; 15(3):537-41. PubMed ID: 17605861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-efficiency immunomagnetic isolation of solid tissue-originated integrin-expressing adult stem cells.
    Palmon A; David R; Neumann Y; Stiubea-Cohen R; Krief G; Aframian DJ
    Methods; 2012 Feb; 56(2):305-9. PubMed ID: 22019721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formulation and preparation of stable cross-linked alginate-zinc nanoparticles in the presence of a monovalent salt.
    Pistone S; Qoragllu D; Smistad G; Hiorth M
    Soft Matter; 2015 Jul; 11(28):5765-74. PubMed ID: 26086433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.