These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 16433091)

  • 1. Crop responses to climatic variation.
    Porter JR; Semenov MA
    Philos Trans R Soc Lond B Biol Sci; 2005 Nov; 360(1463):2021-35. PubMed ID: 16433091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impacts of climate variability and adaptation strategies on crop yields and soil organic carbon in the US Midwest.
    Liu L; Basso B
    PLoS One; 2020; 15(1):e0225433. PubMed ID: 31990907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of temperature, precipitation and carbon dioxide concentrations on the requirements for crop irrigation water in China under future climate scenarios.
    Zhang Y; Wang Y; Niu H
    Sci Total Environ; 2019 Mar; 656():373-387. PubMed ID: 30513428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity and requirement of improvements of four soybean crop simulation models for climate change studies in Southern Brazil.
    Battisti R; Sentelhas PC; Boote KJ
    Int J Biometeorol; 2018 May; 62(5):823-832. PubMed ID: 29196806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico system analysis of physiological traits determining grain yield and protein concentration for wheat as influenced by climate and crop management.
    Martre P; He J; Le Gouis J; Semenov MA
    J Exp Bot; 2015 Jun; 66(12):3581-98. PubMed ID: 25810069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of physical and biological uncertainty in the simulation of the yield of a tropical crop using present-day and doubled CO2 climates.
    Challinor AJ; Wheeler TR; Slingo JM; Hemming D
    Philos Trans R Soc Lond B Biol Sci; 2005 Nov; 360(1463):2085-94. PubMed ID: 16433095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Responses of agricultural crops of free-air CO2 enrichment].
    Kimball BA; Zhu J; Cheng L; Kobayashi K; Bindi M
    Ying Yong Sheng Tai Xue Bao; 2002 Oct; 13(10):1323-38. PubMed ID: 12557686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drought risk in Moldova under global warming and possible crop adaptation strategies.
    Vicente-Serrano SM; Juez C; Potopová V; Boincean B; Murphy C; Domínguez-Castro F; Eklundh L; Peña-Angulo D; Noguera I; Jin H; Conradt T; Garcia-Herrera R; Garrido-Perez JM; Barriopedro D; Gutiérrez JM; Iturbide M; Lorenzo-Lacruz J; Kenawy AE
    Ann N Y Acad Sci; 2024 Aug; 1538(1):144-161. PubMed ID: 39086254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Introduction: food crops in a changing climate.
    Slingo JM; Challinor AJ; Hoskins BJ; Wheeler TR
    Philos Trans R Soc Lond B Biol Sci; 2005 Nov; 360(1463):1983-9. PubMed ID: 16433087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Climatically driven yield variability of major crops in Khakassia (South Siberia).
    Вabushkina EA; Belokopytova LV; Zhirnova DF; Shah SK; Kostyakova TV
    Int J Biometeorol; 2018 Jun; 62(6):939-948. PubMed ID: 29289995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implications for the hydrologic cycle under climate change due to the expansion of bioenergy crops in the Midwestern United States.
    Le PV; Kumar P; Drewry DT
    Proc Natl Acad Sci U S A; 2011 Sep; 108(37):15085-90. PubMed ID: 21876137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Climate change impact on wheat and maize growth in Ethiopia: A multi-model uncertainty analysis.
    Rettie FM; Gayler S; K D Weber T; Tesfaye K; Streck T
    PLoS One; 2022; 17(1):e0262951. PubMed ID: 35061854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elucidating the impact of temperature variability and extremes on cereal croplands through remote sensing.
    Duncan JM; Dash J; Atkinson PM
    Glob Chang Biol; 2015 Apr; 21(4):1541-51. PubMed ID: 24930864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions of CO2, temperature and management practices: simulations with a modified version of CERES-Wheat.
    Tubiello FN; Rosenzweig C; Volk T
    Agric Syst; 1995; 49():135-52. PubMed ID: 11540251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global food insecurity. treatment of major food crops with elevated carbon dioxide or ozone under large-scale fully open-air conditions suggests recent models may have overestimated future yields.
    Long SP; Ainsworth EA; Leakey AD; Morgan PB
    Philos Trans R Soc Lond B Biol Sci; 2005 Nov; 360(1463):2011-20. PubMed ID: 16433090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of climate change on crop yield and role of model for achieving food security.
    Kumar M
    Environ Monit Assess; 2016 Aug; 188(8):465. PubMed ID: 27418072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the combined effects of climatic factors on spring wheat phenophase and grain yield in Inner Mongolia, China.
    Zhao J; Pu F; Li Y; Xu J; Li N; Zhang Y; Guo J; Pan Z
    PLoS One; 2017; 12(11):e0185690. PubMed ID: 29099842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drought, Climate Change, and Dryland Wheat Yield Response: An Econometric Approach.
    Shayanmehr S; Rastegari Henneberry S; Sabouhi Sabouni M; Shahnoushi Foroushani N
    Int J Environ Res Public Health; 2020 Jul; 17(14):. PubMed ID: 32708323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated approaches to climate-crop modelling: needs and challenges.
    Betts RA
    Philos Trans R Soc Lond B Biol Sci; 2005 Nov; 360(1463):2049-65. PubMed ID: 16433093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The implication of irrigation in climate change impact assessment: a European-wide study.
    Zhao G; Webber H; Hoffmann H; Wolf J; Siebert S; Ewert F
    Glob Chang Biol; 2015 Nov; 21(11):4031-48. PubMed ID: 26227557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.