These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 16433095)

  • 1. Quantification of physical and biological uncertainty in the simulation of the yield of a tropical crop using present-day and doubled CO2 climates.
    Challinor AJ; Wheeler TR; Slingo JM; Hemming D
    Philos Trans R Soc Lond B Biol Sci; 2005 Nov; 360(1463):2085-94. PubMed ID: 16433095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitivity and requirement of improvements of four soybean crop simulation models for climate change studies in Southern Brazil.
    Battisti R; Sentelhas PC; Boote KJ
    Int J Biometeorol; 2018 May; 62(5):823-832. PubMed ID: 29196806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The implication of irrigation in climate change impact assessment: a European-wide study.
    Zhao G; Webber H; Hoffmann H; Wolf J; Siebert S; Ewert F
    Glob Chang Biol; 2015 Nov; 21(11):4031-48. PubMed ID: 26227557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crop responses to climatic variation.
    Porter JR; Semenov MA
    Philos Trans R Soc Lond B Biol Sci; 2005 Nov; 360(1463):2021-35. PubMed ID: 16433091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global food insecurity. treatment of major food crops with elevated carbon dioxide or ozone under large-scale fully open-air conditions suggests recent models may have overestimated future yields.
    Long SP; Ainsworth EA; Leakey AD; Morgan PB
    Philos Trans R Soc Lond B Biol Sci; 2005 Nov; 360(1463):2011-20. PubMed ID: 16433090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of climate change on crop yield and role of model for achieving food security.
    Kumar M
    Environ Monit Assess; 2016 Aug; 188(8):465. PubMed ID: 27418072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How do various maize crop models vary in their responses to climate change factors?
    Bassu S; Brisson N; Durand JL; Boote K; Lizaso J; Jones JW; Rosenzweig C; Ruane AC; Adam M; Baron C; Basso B; Biernath C; Boogaard H; Conijn S; Corbeels M; Deryng D; De Sanctis G; Gayler S; Grassini P; Hatfield J; Hoek S; Izaurralde C; Jongschaap R; Kemanian AR; Kersebaum KC; Kim SH; Kumar NS; Makowski D; Müller C; Nendel C; Priesack E; Pravia MV; Sau F; Shcherbak I; Tao F; Teixeira E; Timlin D; Waha K
    Glob Chang Biol; 2014 Jul; 20(7):2301-20. PubMed ID: 24395589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of crop model structure, parameters and climate projections to uncertainty in climate change impact assessments.
    Tao F; Rötter RP; Palosuo T; Gregorio Hernández Díaz-Ambrona C; Mínguez MI; Semenov MA; Kersebaum KC; Nendel C; Specka X; Hoffmann H; Ewert F; Dambreville A; Martre P; Rodríguez L; Ruiz-Ramos M; Gaiser T; Höhn JG; Salo T; Ferrise R; Bindi M; Cammarano D; Schulman AH
    Glob Chang Biol; 2018 Mar; 24(3):1291-1307. PubMed ID: 29245185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon-temperature-water change analysis for peanut production under climate change: a prototype for the AgMIP coordinated climate-crop modeling project (C3MP).
    Ruane AC; McDermid S; Rosenzweig C; Baigorria GA; Jones JW; Romero CC; Dewayne Cecil L
    Glob Chang Biol; 2014 Feb; 20(2):394-407. PubMed ID: 24115520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating the long-term impact of projected climate on rice-lentil-groundnut cropping system in Lower Gangetic Plain of India using crop simulation modelling.
    Chandran M A S; Banerjee S; Mukherjee A; Nanda MK; Kumari VV
    Int J Biometeorol; 2022 Jan; 66(1):55-69. PubMed ID: 34554286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated approaches to climate-crop modelling: needs and challenges.
    Betts RA
    Philos Trans R Soc Lond B Biol Sci; 2005 Nov; 360(1463):2049-65. PubMed ID: 16433093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving ecophysiological simulation models to predict the impact of elevated atmospheric CO(2) concentration on crop productivity.
    Yin X
    Ann Bot; 2013 Aug; 112(3):465-75. PubMed ID: 23388883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Climate change impact on wheat and maize growth in Ethiopia: A multi-model uncertainty analysis.
    Rettie FM; Gayler S; K D Weber T; Tesfaye K; Streck T
    PLoS One; 2022; 17(1):e0262951. PubMed ID: 35061854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The uncertainty of crop yield projections is reduced by improved temperature response functions.
    Wang E; Martre P; Zhao Z; Ewert F; Maiorano A; Rötter RP; Kimball BA; Ottman MJ; Wall GW; White JW; Reynolds MP; Alderman PD; Aggarwal PK; Anothai J; Basso B; Biernath C; Cammarano D; Challinor AJ; De Sanctis G; Doltra J; Dumont B; Fereres E; Garcia-Vila M; Gayler S; Hoogenboom G; Hunt LA; Izaurralde RC; Jabloun M; Jones CD; Kersebaum KC; Koehler AK; Liu L; Müller C; Naresh Kumar S; Nendel C; O'Leary G; Olesen JE; Palosuo T; Priesack E; Eyshi Rezaei E; Ripoche D; Ruane AC; Semenov MA; Shcherbak I; Stöckle C; Stratonovitch P; Streck T; Supit I; Tao F; Thorburn P; Waha K; Wallach D; Wang Z; Wolf J; Zhu Y; Asseng S
    Nat Plants; 2017 Jul; 3():17102. PubMed ID: 28714956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining the effects of increased atmospheric carbon dioxide on protein, iron, and zinc availability and projected climate change on global diets: a modelling study.
    Beach RH; Sulser TB; Crimmins A; Cenacchi N; Cole J; Fukagawa NK; Mason-D'Croz D; Myers S; Sarofim MC; Smith M; Ziska LH
    Lancet Planet Health; 2019 Jul; 3(7):e307-e317. PubMed ID: 31326071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How much has the increase in atmospheric CO2 directly affected past soybean production?
    Sakurai G; Iizumi T; Nishimori M; Yokozawa M
    Sci Rep; 2014 May; 4():4978. PubMed ID: 24827887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One crop breeding cycle from starvation? How engineering crop photosynthesis for rising CO2 and temperature could be one important route to alleviation.
    Kromdijk J; Long SP
    Proc Biol Sci; 2016 Mar; 283(1826):20152578. PubMed ID: 26962136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions.
    Li T; Hasegawa T; Yin X; Zhu Y; Boote K; Adam M; Bregaglio S; Buis S; Confalonieri R; Fumoto T; Gaydon D; Marcaida M; Nakagawa H; Oriol P; Ruane AC; Ruget F; Singh B; Singh U; Tang L; Tao F; Wilkens P; Yoshida H; Zhang Z; Bouman B
    Glob Chang Biol; 2015 Mar; 21(3):1328-41. PubMed ID: 25294087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Causes of variation among rice models in yield response to CO
    Hasegawa T; Li T; Yin X; Zhu Y; Boote K; Baker J; Bregaglio S; Buis S; Confalonieri R; Fugice J; Fumoto T; Gaydon D; Kumar SN; Lafarge T; Marcaida Iii M; Masutomi Y; Nakagawa H; Oriol P; Ruget F; Singh U; Tang L; Tao F; Wakatsuki H; Wallach D; Wang Y; Wilson LT; Yang L; Yang Y; Yoshida H; Zhang Z; Zhu J
    Sci Rep; 2017 Nov; 7(1):14858. PubMed ID: 29093514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon dioxide effects on stomatal responses to the environment and water use by crops under field conditions.
    Bunce JA
    Oecologia; 2004 Jun; 140(1):1-10. PubMed ID: 14557864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.