These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 16433332)
1. Application of multimedia models for screening assessment of long-range transport potential and overall persistence. Klasmeier J; Matthies M; Macleod M; Fenner K; Scheringer M; Stroebe M; Le Gall AC; Mckone T; Van De Meent D; Wania F Environ Sci Technol; 2006 Jan; 40(1):53-60. PubMed ID: 16433332 [TBL] [Abstract][Full Text] [Related]
2. A new multimedia contaminant fate model for China: how important are environmental parameters in influencing chemical persistence and long-range transport potential? Zhu Y; Price OR; Tao S; Jones KC; Sweetman AJ Environ Int; 2014 Aug; 69():18-27. PubMed ID: 24791706 [TBL] [Abstract][Full Text] [Related]
3. Multimedia partitioning, overall persistence, and long-range transport potential in the context of POPs and PBT chemical assessments. Scheringer M; Jones KC; Matthies M; Simonich S; van de Meent D Integr Environ Assess Manag; 2009 Oct; 5(4):557-76. PubMed ID: 19552504 [TBL] [Abstract][Full Text] [Related]
4. Comparing estimates of persistence and long-range transport potential among multimedia models. Fenner K; Scheringer M; Macleod M; Matthies M; McKone T; Stroebe M; Beyer A; Bonnell M; Le Gall AC; Klasmeier J; Mackay D; Van De Meent D; Pennington D; Scharenberg B; Suzuki N; Wania F Environ Sci Technol; 2005 Apr; 39(7):1932-42. PubMed ID: 15871221 [TBL] [Abstract][Full Text] [Related]
5. Assessing persistence and long-range transport potential of current-use pesticides. Matthies M; Klasmeier J; Beyer A; Ehling C Environ Sci Technol; 2009 Dec; 43(24):9223-9. PubMed ID: 20000513 [TBL] [Abstract][Full Text] [Related]
6. Screening criteria for long-range transport potential of organic substances in water. Zarfl C; Scheringer M; Matthies M Environ Sci Technol; 2011 Dec; 45(23):10075-81. PubMed ID: 22011287 [TBL] [Abstract][Full Text] [Related]
7. A new metric for long-range transport potential of chemicals. Kawai T; Jagiello K; Sosnowska A; Odziomek K; Gajewicz A; Handoh IC; Puzyn T; Suzuki N Environ Sci Technol; 2014 Mar; 48(6):3245-52. PubMed ID: 24579696 [TBL] [Abstract][Full Text] [Related]
8. The Emissions Fractions Approach to Assessing the Long-Range Transport Potential of Organic Chemicals. Breivik K; McLachlan MS; Wania F Environ Sci Technol; 2022 Sep; 56(17):11983-11990. PubMed ID: 35951418 [TBL] [Abstract][Full Text] [Related]
9. Are there other persistent organic pollutants? A challenge for environmental chemists. Muir DC; Howard PH Environ Sci Technol; 2006 Dec; 40(23):7157-66. PubMed ID: 17180962 [TBL] [Abstract][Full Text] [Related]
10. Measures of overall persistence and the temporal remote state. Stroebe M; Scheringer M; Hungerbühler K Environ Sci Technol; 2004 Nov; 38(21):5665-73. PubMed ID: 15575286 [TBL] [Abstract][Full Text] [Related]
11. Relationship of approaches and a tiered methodology for screening chemicals in the context of long-range transport. Pennington DW Chemosphere; 2001 Sep; 44(7):1617-31. PubMed ID: 11545527 [TBL] [Abstract][Full Text] [Related]
12. Environmental persistence of organic pollutants: guidance for development and review of POP risk profiles. Boethling R; Fenner K; Howard P; Klecka G; Madsen T; Snape JR; Whelan MJ Integr Environ Assess Manag; 2009 Oct; 5(4):539-56. PubMed ID: 19552498 [TBL] [Abstract][Full Text] [Related]
13. Prediction of overall persistence and long-range transport potential with multimedia fate models: robustness and sensitivity of results. Fenner K; Scheringer M; Hungerbühler K Environ Pollut; 2004; 128(1-2):189-204. PubMed ID: 14667728 [TBL] [Abstract][Full Text] [Related]
14. Inter-comparison of multimedia modeling approaches: modes of transport, measures of long range transport potential and the spatial remote state. Stroebe M; Scheringer M; Held H; Hungerbühler K Sci Total Environ; 2004 Apr; 321(1-3):1-20. PubMed ID: 15050382 [TBL] [Abstract][Full Text] [Related]
15. The spatial scale of organic chemicals in multimedia fate modeling. Recent developments and significance for chemical assessment. Scheringer M; Hungerbühler K; Matthies M Environ Sci Pollut Res Int; 2001; 8(3):150-5. PubMed ID: 11505898 [TBL] [Abstract][Full Text] [Related]
16. In Silico Screening-Level Prioritization of 8468 Chemicals Produced in OECD Countries to Identify Potential Planetary Boundary Threats. Reppas-Chrysovitsinos E; Sobek A; MacLeod M Bull Environ Contam Toxicol; 2018 Jan; 100(1):134-146. PubMed ID: 29285590 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of the OECD P Sühring R; Scheringer M; Rodgers TFM; Jantunen LM; Diamond ML Environ Sci Process Impacts; 2020 Jan; 22(1):207-216. PubMed ID: 31894800 [TBL] [Abstract][Full Text] [Related]
18. A modeling assessment of the physicochemical properties and environmental fate of emerging and novel per- and polyfluoroalkyl substances. Gomis MI; Wang Z; Scheringer M; Cousins IT Sci Total Environ; 2015 Feb; 505():981-91. PubMed ID: 25461098 [TBL] [Abstract][Full Text] [Related]
19. Modeling exposure to persistent chemicals in hazard and risk assessment. Cowan-Ellsberry CE; McLachlan MS; Arnot JA; Macleod M; McKone TE; Wania F Integr Environ Assess Manag; 2009 Oct; 5(4):662-79. PubMed ID: 19552503 [TBL] [Abstract][Full Text] [Related]
20. Identification of substances with potential for long-range transport as possible substances of very high concern. Zarfl C; Hotopp I; Kehrein N; Matthies M Environ Sci Pollut Res Int; 2012 Sep; 19(8):3152-61. PubMed ID: 22752812 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]