BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

531 related articles for article (PubMed ID: 16433414)

  • 1. Comparison of selective attachment and growth of smooth muscle cells on gelatin- and fibronectin-coated micropatterns.
    Li M; Cui T; Mills DK; Lvov YM; McShane MJ
    J Nanosci Nanotechnol; 2005 Nov; 5(11):1809-15. PubMed ID: 16433414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular response to gelatin- and fibronectin-coated multilayer polyelectrolyte nanofilms.
    Li M; Mills DK; Cui T; Mcshane MJ
    IEEE Trans Nanobioscience; 2005 Jun; 4(2):170-9. PubMed ID: 16117025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fibronectin and cell attachment to cell and protein resistant polyelectrolyte surfaces.
    Olenych SG; Moussallem MD; Salloum DS; Schlenoff JB; Keller TC
    Biomacromolecules; 2005; 6(6):3252-8. PubMed ID: 16283753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of polyelectrolyte multilayers by flexible and semiflexible chains.
    Wu B; Li C; Yang H; Liu G; Zhang G
    J Phys Chem B; 2012 Mar; 116(10):3106-14. PubMed ID: 22356427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyelectrolyte droplets facilitate versatile layer-by-layer coating for protein loading interface.
    Watanabe J; Shen H; Akashi M
    Acta Biomater; 2008 Sep; 4(5):1255-62. PubMed ID: 18436492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanometer-sized extracellular matrix coating on polymer-based scaffold for tissue engineering applications.
    Uchida N; Sivaraman S; Amoroso NJ; Wagner WR; Nishiguchi A; Matsusaki M; Akashi M; Nagatomi J
    J Biomed Mater Res A; 2016 Jan; 104(1):94-103. PubMed ID: 26194176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fibronectin terminated multilayer films: protein adsorption and cell attachment studies.
    Wittmer CR; Phelps JA; Saltzman WM; Van Tassel PR
    Biomaterials; 2007 Feb; 28(5):851-60. PubMed ID: 17056106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differentiation of MC3T3-E1 on poly(4-styrenesulfonic acid-co-maleic acid)sodium salt-coated films.
    Angwarawong T; Dubas ST; Arksornnukit M; Pavasant P
    Dent Mater J; 2011; 30(2):158-69. PubMed ID: 21422666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Affinity study of novel gelatin cell carriers for fibronectin.
    Van Vlierberghe S; Vanderleyden E; Dubruel P; De Vos F; Schacht E
    Macromol Biosci; 2009 Nov; 9(11):1105-15. PubMed ID: 19626719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of interdigitated micropatterns of self-assembled polymer nanofilms containing cell-adhesive materials.
    Shaikh Mohammed J; Decoster MA; McShane MJ
    Langmuir; 2006 Mar; 22(6):2738-46. PubMed ID: 16519477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polysaccharide-protein surface modification of titanium via a layer-by-layer technique: characterization and cell behaviour aspects.
    Cai K; Rechtenbach A; Hao J; Bossert J; Jandt KD
    Biomaterials; 2005 Oct; 26(30):5960-71. PubMed ID: 15913761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional multilayers of smooth muscle cells as a new experimental model for vascular elastic fiber formation studies.
    Ishiwata R; Yokoyama U; Matsusaki M; Asano Y; Kadowaki K; Ichikawa Y; Umemura M; Fujita T; Minamisawa S; Shimoda H; Akashi M; Ishikawa Y
    Atherosclerosis; 2014 Apr; 233(2):590-600. PubMed ID: 24534454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyelectrolyte multilayer films: effect of the initial anchoring layer on the cell growth.
    Moby V; Kadi A; de Isla N; Stoltz JF; Menu P
    Biomed Mater Eng; 2008; 18(4-5):199-204. PubMed ID: 19065022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micropatterned polyelectrolyte nanofilms promote alignment and myogenic differentiation of C2C12 cells in standard growth media.
    Palamà IE; D'Amone S; Coluccia AM; Gigli G
    Biotechnol Bioeng; 2013 Feb; 110(2):586-96. PubMed ID: 22886558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion-induced cell sheet detachment from standard cell culture surfaces coated with polyelectrolytes.
    Zahn R; Thomasson E; Guillaume-Gentil O; Vörös J; Zambelli T
    Biomaterials; 2012 Apr; 33(12):3421-7. PubMed ID: 22300744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influences of surface chemistry and swelling of salt-treated polyelectrolyte multilayers on migration of smooth muscle cells.
    Han L; Mao Z; Wu J; Zhang Y; Gao C
    J R Soc Interface; 2012 Dec; 9(77):3455-68. PubMed ID: 22896570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards biomimicking wood: fabricated free-standing films of Nanocellulose, Lignin, and a synthetic polycation.
    Pillai K; Navarro Arzate F; Zhang W; Renneckar S
    J Vis Exp; 2014 Jun; (88):. PubMed ID: 24961302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantification of growth and differentiation of C2C12 skeletal muscle cells on PSS-PAH-based polyelectrolyte layer-by-layer nanofilms.
    Ricotti L; Taccola S; Bernardeschi I; Pensabene V; Dario P; Menciassi A
    Biomed Mater; 2011 Jun; 6(3):031001. PubMed ID: 21566276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fibronectin adsorption onto polyelectrolyte multilayer films.
    Ngankam AP; Mao G; Van Tassel PR
    Langmuir; 2004 Apr; 20(8):3362-70. PubMed ID: 15875870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micropatterning of nanoengineered surfaces to study neuronal cell attachment in vitro.
    Mohammed JS; DeCoster MA; McShane MJ
    Biomacromolecules; 2004; 5(5):1745-55. PubMed ID: 15360283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.