BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 16433462)

  • 1. [In vitro generation of mature and functional human red blood cells: a model with multidisciplinary perspectives].
    Douay L; Giarratana MC
    Bull Acad Natl Med; 2005 May; 189(5):903-13; discussion 914-5. PubMed ID: 16433462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ex vivo generation of human red blood cells: a new advance in stem cell engineering.
    Douay L; Giarratana MC
    Methods Mol Biol; 2009; 482():127-40. PubMed ID: 19089353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ex vivo generation of fully mature human red blood cells from hematopoietic stem cells.
    Giarratana MC; Kobari L; Lapillonne H; Chalmers D; Kiger L; Cynober T; Marden MC; Wajcman H; Douay L
    Nat Biotechnol; 2005 Jan; 23(1):69-74. PubMed ID: 15619619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro proliferation and differentiation of human CD34+ cells from peripheral blood into mature red blood cells with two different cell culture systems.
    Dorn I; Lazar-Karsten P; Boie S; Ribbat J; Hartwig D; Driller B; Kirchner H; Schlenke P
    Transfusion; 2008 Jun; 48(6):1122-32. PubMed ID: 18298595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro clinical-grade generation of red blood cells from human umbilical cord blood CD34+ cells.
    Baek EJ; Kim HS; Kim S; Jin H; Choi TY; Kim HO
    Transfusion; 2008 Oct; 48(10):2235-45. PubMed ID: 18673341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human erythroid cells produced ex vivo at large scale differentiate into red blood cells in vivo.
    Neildez-Nguyen TM; Wajcman H; Marden MC; Bensidhoum M; Moncollin V; Giarratana MC; Kobari L; Thierry D; Douay L
    Nat Biotechnol; 2002 May; 20(5):467-72. PubMed ID: 11981559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ex vivo production of human red blood cells from hematopoietic stem cells: what is the future in transfusion?
    Douay L; Andreu G
    Transfus Med Rev; 2007 Apr; 21(2):91-100. PubMed ID: 17397760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stroma-free mass production of clinical-grade red blood cells (RBCs) by using poloxamer 188 as an RBC survival enhancer.
    Baek EJ; Kim HS; Kim JH; Kim NJ; Kim HO
    Transfusion; 2009 Nov; 49(11):2285-95. PubMed ID: 19602217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The potential of human peripheral blood derived CD34+ cells for ex vivo red blood cell production.
    Boehm D; Murphy WG; Al-Rubeai M
    J Biotechnol; 2009 Oct; 144(2):127-34. PubMed ID: 19735679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrastructural and phenotypic analysis of in vitro erythropoiesis from human cord blood CD34+ cells.
    Kie JH; Jung YJ; Woo SY; Ryu KH; Park HY; Chung WS; Seoh JY
    Ann Hematol; 2003 May; 82(5):278-83. PubMed ID: 12679887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A small-scale serum-free liquid cell culture model of erythropoiesis to assess the effects of exogenous factors.
    Cheung JO; Casals-Pascual C; Roberts DJ; Watt SM
    J Immunol Methods; 2007 Jan; 319(1-2):104-17. PubMed ID: 17174973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low oxygen concentration as a general physiologic regulator of erythropoiesis beyond the EPO-related downstream tuning and a tool for the optimization of red blood cell production ex vivo.
    Vlaski M; Lafarge X; Chevaleyre J; Duchez P; Boiron JM; Ivanovic Z
    Exp Hematol; 2009 May; 37(5):573-84. PubMed ID: 19375648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Erythroid differentiation and maturation from peripheral CD34+ cells in liquid culture: cellular and molecular characterization.
    Ronzoni L; Bonara P; Rusconi D; Frugoni C; Libani I; Cappellini MD
    Blood Cells Mol Dis; 2008; 40(2):148-55. PubMed ID: 17889571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Cell culture for transfusion purposes: the case of red blood cells].
    Douay L
    Transfus Clin Biol; 2009 May; 16(2):134-7. PubMed ID: 19375969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization and transplantation of induced megakaryocytes from hematopoietic stem cells for rapid platelet recovery by a two-step serum-free procedure.
    Chen TW; Hwang SM; Chu IM; Hsu SC; Hsieh TB; Yao CL
    Exp Hematol; 2009 Nov; 37(11):1330-1339.e5. PubMed ID: 19664680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Erythropoiesis: model systems, molecular regulators, and developmental programs.
    Tsiftsoglou AS; Vizirianakis IS; Strouboulis J
    IUBMB Life; 2009 Aug; 61(8):800-30. PubMed ID: 19621348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ex vivo expansion of umbilical cord blood stem cells using different combinations of cytokines and stromal cells.
    Madkaikar M; Ghosh K; Gupta M; Swaminathan S; Mohanty D
    Acta Haematol; 2007; 118(3):153-9. PubMed ID: 17890847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [From control of hematopoiesis to cellular therapy: the perspectives for transfusion].
    Douay L
    Ann Biol Clin (Paris); 2003; 61(3):259-67. PubMed ID: 12805002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Under HEMA conditions, self-replication of human erythroblasts is limited by autophagic death.
    Migliaccio G; Masiello F; Tirelli V; Sanchez M; Varricchio L; Whitsett C; Migliaccio AR
    Blood Cells Mol Dis; 2011 Oct; 47(3):182-97. PubMed ID: 21775174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-scale production of embryonic red blood cells from human embryonic stem cells.
    Olivier EN; Qiu C; Velho M; Hirsch RE; Bouhassira EE
    Exp Hematol; 2006 Dec; 34(12):1635-42. PubMed ID: 17157159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.