BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

434 related articles for article (PubMed ID: 16433631)

  • 21. Role of glutathione in heat-shock-induced cell death of Saccharomyces cerevisiae.
    Sugiyama K; Kawamura A; Izawa S; Inoue Y
    Biochem J; 2000 Nov; 352 Pt 1(Pt 1):71-8. PubMed ID: 11062059
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification and characterization of genes involved in glutathione production in yeast.
    Suzuki T; Yokoyama A; Tsuji T; Ikeshima E; Nakashima K; Ikushima S; Kobayashi C; Yoshida S
    J Biosci Bioeng; 2011 Aug; 112(2):107-13. PubMed ID: 21601516
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stress-induced transcription of the endoplasmic reticulum oxidoreductin gene ERO1 in the yeast Saccharomyces cerevisiae.
    Takemori Y; Sakaguchi A; Matsuda S; Mizukami Y; Sakurai H
    Mol Genet Genomics; 2006 Jan; 275(1):89-96. PubMed ID: 16292667
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Monitoring stress-related genes during the process of biomass propagation of Saccharomyces cerevisiae strains used for wine making.
    Pérez-Torrado R; Bruno-Bárcena JM; Matallana E
    Appl Environ Microbiol; 2005 Nov; 71(11):6831-7. PubMed ID: 16269716
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cytotoxicity and gene induction by some essential oils in the yeast Saccharomyces cerevisiae.
    Bakkali F; Averbeck S; Averbeck D; Zhiri A; Idaomar M
    Mutat Res; 2005 Aug; 585(1-2):1-13. PubMed ID: 15975845
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Glutaredoxins Grx3 and Grx4 regulate nuclear localisation of Aft1 and the oxidative stress response in Saccharomyces cerevisiae.
    Pujol-Carrion N; Belli G; Herrero E; Nogues A; de la Torre-Ruiz MA
    J Cell Sci; 2006 Nov; 119(Pt 21):4554-64. PubMed ID: 17074835
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nuclear thioredoxin peroxidase Dot5 in Saccharomyces cerevisiae: roles in oxidative stress response and disruption of telomeric silencing.
    Izawa S; Kuroki N; Inoue Y
    Appl Microbiol Biotechnol; 2004 Mar; 64(1):120-4. PubMed ID: 12925864
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Activation of an AP1-like transcription factor of the maize pathogen Cochliobolus heterostrophus in response to oxidative stress and plant signals.
    Lev S; Hadar R; Amedeo P; Baker SE; Yoder OC; Horwitz BA
    Eukaryot Cell; 2005 Feb; 4(2):443-54. PubMed ID: 15701806
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Accounting for strain-specific differences during RTG target gene regulation in Saccharomyces cerevisiae.
    Dilova I; Powers T
    FEMS Yeast Res; 2006 Jan; 6(1):112-9. PubMed ID: 16423076
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative analysis of transcriptional responses to saline stress in the laboratory and brewing strains of Saccharomyces cerevisiae with DNA microarray.
    Hirasawa T; Nakakura Y; Yoshikawa K; Ashitani K; Nagahisa K; Furusawa C; Katakura Y; Shimizu H; Shioya S
    Appl Microbiol Biotechnol; 2006 Apr; 70(3):346-57. PubMed ID: 16283296
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Induction of heat shock protein synthesis in human skin fibroblasts in response to oxidative stress: regulation by a natural antioxidant from rosemary extract.
    Calabrese V; Scapagnini G; Catalano C; Bates TE; Dinotta F; Micali G; Giuffrida Stella AM
    Int J Tissue React; 2001; 23(2):51-8. PubMed ID: 11447773
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Early expression of yeast genes affected by chemical stress.
    Lucau-Danila A; Lelandais G; Kozovska Z; Tanty V; Delaveau T; Devaux F; Jacq C
    Mol Cell Biol; 2005 Mar; 25(5):1860-8. PubMed ID: 15713640
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A stress regulatory network for co-ordinated activation of proteasome expression mediated by yeast heat shock transcription factor.
    Hahn JS; Neef DW; Thiele DJ
    Mol Microbiol; 2006 Apr; 60(1):240-51. PubMed ID: 16556235
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Antioxidant small molecules confer variable protection against oxidative damage in yeast mutants.
    Amari F; Fettouche A; Samra MA; Kefalas P; Kampranis SC; Makris AM
    J Agric Food Chem; 2008 Dec; 56(24):11740-51. PubMed ID: 19049288
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Toxic effect of cysteine on cells of Saccharomyces cerevisiae growing on media of various compositions].
    Damberg BE; Blumberg IaE
    Mikrobiologiia; 1983; 52(1):68-72. PubMed ID: 6341788
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evidence for oxidative stress at elevated plasma thiol levels in chronic exposure to carbon disulfide (CS2) and coronary heart disease.
    Wronska-Nofer T; Nofer JR; Stetkiewicz J; Wierzbicka M; Bolinska H; Fobker M; Schulte H; Assmann G; von Eckardstein A
    Nutr Metab Cardiovasc Dis; 2007 Sep; 17(7):546-53. PubMed ID: 17134958
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanisms of copper toxicity in Saccharomyces cerevisiae determined by microarray analysis.
    Yasokawa D; Murata S; Kitagawa E; Iwahashi Y; Nakagawa R; Hashido T; Iwahashi H
    Environ Toxicol; 2008 Oct; 23(5):599-606. PubMed ID: 18528910
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of the YAP1 and YAP2 genes in the regulation of the adaptive oxidative stress responses of Saccharomyces cerevisiae.
    Stephen DW; Rivers SL; Jamieson DJ
    Mol Microbiol; 1995 May; 16(3):415-23. PubMed ID: 7565103
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oxidative stress response in Paracoccidioides brasiliensis: assessing catalase and cytochrome c peroxidase.
    Dantas AS; Andrade RV; de Carvalho MJ; Felipe MS; Campos EG
    Mycol Res; 2008 Jun; 112(Pt 6):747-56. PubMed ID: 18499421
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin.
    Biteau B; Labarre J; Toledano MB
    Nature; 2003 Oct; 425(6961):980-4. PubMed ID: 14586471
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.